Spatial Processes
Author: Andrew David Cliff
Publisher: Taylor & Francis
Published: 1981
Total Pages: 266
ISBN-13: 9780850860818
DOWNLOAD EBOOKRead and Download eBook Full
Author: Andrew David Cliff
Publisher: Taylor & Francis
Published: 1981
Total Pages: 266
ISBN-13: 9780850860818
DOWNLOAD EBOOKAuthor: B. D. Ripley
Publisher: Cambridge University Press
Published: 1988
Total Pages: 162
ISBN-13: 9780521424202
DOWNLOAD EBOOKThe study of spatial processes and their applications is an important topic in statistics and finds wide application particularly in computer vision and image processing. This book is devoted to statistical inference in spatial statistics and is intended for specialists needing an introduction to the subject and to its applications. One of the themes of the book is the demonstration of how these techniques give new insights into classical procedures (including new examples in likelihood theory) and newer statistical paradigms such as Monte-Carlo inference and pseudo-likelihood. Professor Ripley also stresses the importance of edge effects and of lack of a unique asymptotic setting in spatial problems. Throughout, the author discusses the foundational issues posed and the difficulties, both computational and philosophical, which arise. The final chapters consider image restoration and segmentation methods and the averaging and summarising of images. Thus, the book will find wide appeal to researchers in computer vision, image processing, and those applying microscopy in biology, geology and materials science, as well as to statisticians interested in the foundations of their discipline.
Author: Volker Schmidt
Publisher: Springer
Published: 2014-10-24
Total Pages: 484
ISBN-13: 3319100645
DOWNLOAD EBOOKThis volume is an attempt to provide a graduate level introduction to various aspects of stochastic geometry, spatial statistics and random fields, with special emphasis placed on fundamental classes of models and algorithms as well as on their applications, e.g. in materials science, biology and genetics. This book has a strong focus on simulations and includes extensive codes in Matlab and R which are widely used in the mathematical community. It can be seen as a continuation of the recent volume 2068 of Lecture Notes in Mathematics, where other issues of stochastic geometry, spatial statistics and random fields were considered with a focus on asymptotic methods.
Author: Reginald G. Golledge
Publisher: JHU Press
Published: 1999
Total Pages: 460
ISBN-13: 9780801859939
DOWNLOAD EBOOKThe metaphor of a "cognitive map" has attracted interest since the 1940s. Researchers from many fields have explored how humans process and use spatial information, why they make errors or not. This text brings together contributors from diverse fields to explore the
Author: Yu A. Kutoyants
Publisher: Springer Science & Business Media
Published: 2012-12-06
Total Pages: 282
ISBN-13: 1461217067
DOWNLOAD EBOOKThis work is devoted to several problems of parametric (mainly) and nonparametric estimation through the observation of Poisson processes defined on general spaces. Poisson processes are quite popular in applied research and therefore they attract the attention of many statisticians. There are a lot of good books on point processes and many of them contain chapters devoted to statistical inference for general and partic ular models of processes. There are even chapters on statistical estimation problems for inhomogeneous Poisson processes in asymptotic statements. Nevertheless it seems that the asymptotic theory of estimation for nonlinear models of Poisson processes needs some development. Here nonlinear means the models of inhomogeneous Pois son processes with intensity function nonlinearly depending on unknown parameters. In such situations the estimators usually cannot be written in exact form and are given as solutions of some equations. However the models can be quite fruitful in en gineering problems and the existing computing algorithms are sufficiently powerful to calculate these estimators. Therefore the properties of estimators can be interesting too.
Author: Adrian Baddeley
Publisher: Springer Science & Business Media
Published: 2006-03-03
Total Pages: 312
ISBN-13: 0387311440
DOWNLOAD EBOOKPoint process statistics is successfully used in fields such as material science, human epidemiology, social sciences, animal epidemiology, biology, and seismology. Its further application depends greatly on good software and instructive case studies that show the way to successful work. This book satisfies this need by a presentation of the spatstat package and many statistical examples. Researchers, spatial statisticians and scientists from biology, geosciences, materials sciences and other fields will use this book as a helpful guide to the application of point process statistics. No other book presents so many well-founded point process case studies. From the reviews: "For those interested in analyzing their spatial data, the wide variatey of examples and approaches here give a good idea of the possibilities and suggest reasonable paths to explore." Michael Sherman for the Journal of the American Statistical Association, December 2006
Author: Jesper Moller
Publisher: CRC Press
Published: 2003-09-25
Total Pages: 320
ISBN-13: 9780203496930
DOWNLOAD EBOOKSpatial point processes play a fundamental role in spatial statistics and today they are an active area of research with many new applications. Although other published works address different aspects of spatial point processes, most of the classical literature deals only with nonparametric methods, and a thorough treatment of the theory and applications of simulation-based inference is difficult to find. Written by researchers at the top of the field, this book collects and unifies recent theoretical advances and examples of applications. The authors examine Markov chain Monte Carlo algorithms and explore one of the most important recent developments in MCMC: perfect simulation procedures.
Author: Jean-Francois Le Gall
Publisher: Birkhäuser
Published: 2012-12-06
Total Pages: 170
ISBN-13: 3034886837
DOWNLOAD EBOOKThis book introduces several remarkable new probabilistic objects that combine spatial motion with a continuous branching phenomenon and are closely related to certain semilinear partial differential equations (PDE). The Brownian snake approach is used to give a powerful representation of superprocesses and also to investigate connections between superprocesses and PDEs. These are notable because almost every important probabilistic question corresponds to a significant analytic problem.
Author: David O'Sullivan
Publisher: John Wiley & Sons
Published: 2013-08-05
Total Pages: 348
ISBN-13: 1118527070
DOWNLOAD EBOOKA ground-up approach to explaining dynamic spatial modelling for an interdisciplinary audience. Across broad areas of the environmental and social sciences, simulation models are an important way to study systems inaccessible to scientific experimental and observational methods, and also an essential complement to those more conventional approaches. The contemporary research literature is teeming with abstract simulation models whose presentation is mathematically demanding and requires a high level of knowledge of quantitative and computational methods and approaches. Furthermore, simulation models designed to represent specific systems and phenomena are often complicated, and, as a result, difficult to reconstruct from their descriptions in the literature. This book aims to provide a practical and accessible account of dynamic spatial modelling, while also equipping readers with a sound conceptual foundation in the subject, and a useful introduction to the wide-ranging literature. Spatial Simulation: Exploring Pattern and Process is organised around the idea that a small number of spatial processes underlie the wide variety of dynamic spatial models. Its central focus on three ‘building-blocks’ of dynamic spatial models – forces of attraction and segregation, individual mobile entities, and processes of spread – guides the reader to an understanding of the basis of many of the complicated models found in the research literature. The three building block models are presented in their simplest form and are progressively elaborated and related to real world process that can be represented using them. Introductory chapters cover essential background topics, particularly the relationships between pattern, process and spatiotemporal scale. Additional chapters consider how time and space can be represented in more complicated models, and methods for the analysis and evaluation of models. Finally, the three building block models are woven together in a more elaborate example to show how a complicated model can be assembled from relatively simple components. To aid understanding, more than 50 specific models described in the book are available online at patternandprocess.org for exploration in the freely available Netlogo platform. This book encourages readers to develop intuition for the abstract types of model that are likely to be appropriate for application in any specific context. Spatial Simulation: Exploring Pattern and Process will be of interest to undergraduate and graduate students taking courses in environmental, social, ecological and geographical disciplines. Researchers and professionals who require a non-specialist introduction will also find this book an invaluable guide to dynamic spatial simulation.
Author: Dr. Janine Illian
Publisher: John Wiley & Sons
Published: 2008-04-15
Total Pages: 560
ISBN-13: 9780470725153
DOWNLOAD EBOOKSpatial point processes are mathematical models used to describe and analyse the geometrical structure of patterns formed by objects that are irregularly or randomly distributed in one-, two- or three-dimensional space. Examples include locations of trees in a forest, blood particles on a glass plate, galaxies in the universe, and particle centres in samples of material. Numerous aspects of the nature of a specific spatial point pattern may be described using the appropriate statistical methods. Statistical Analysis and Modelling of Spatial Point Patterns provides a practical guide to the use of these specialised methods. The application-oriented approach helps demonstrate the benefits of this increasingly popular branch of statistics to a broad audience. The book: Provides an introduction to spatial point patterns for researchers across numerous areas of application Adopts an extremely accessible style, allowing the non-statistician complete understanding Describes the process of extracting knowledge from the data, emphasising the marked point process Demonstrates the analysis of complex datasets, using applied examples from areas including biology, forestry, and materials science Features a supplementary website containing example datasets. Statistical Analysis and Modelling of Spatial Point Patterns is ideally suited for researchers in the many areas of application, including environmental statistics, ecology, physics, materials science, geostatistics, and biology. It is also suitable for students of statistics, mathematics, computer science, biology and geoinformatics.