Inverse Problems and High-Dimensional Estimation

Inverse Problems and High-Dimensional Estimation

Author: Pierre Alquier

Publisher: Springer Science & Business Media

Published: 2011-06-07

Total Pages: 204

ISBN-13: 3642199895

DOWNLOAD EBOOK

The “Stats in the Château” summer school was held at the CRC château on the campus of HEC Paris, Jouy-en-Josas, France, from August 31 to September 4, 2009. This event was organized jointly by faculty members of three French academic institutions ─ ENSAE ParisTech, the Ecole Polytechnique ParisTech, and HEC Paris ─ which cooperate through a scientific foundation devoted to the decision sciences. The scientific content of the summer school was conveyed in two courses, one by Laurent Cavalier (Université Aix-Marseille I) on "Ill-posed Inverse Problems", and one by Victor Chernozhukov (Massachusetts Institute of Technology) on "High-dimensional Estimation with Applications to Economics". Ten invited researchers also presented either reviews of the state of the art in the field or of applications, or original research contributions. This volume contains the lecture notes of the two courses. Original research articles and a survey complement these lecture notes. Applications to economics are discussed in various contributions.


Applied Nonparametric Econometrics

Applied Nonparametric Econometrics

Author: Daniel J. Henderson

Publisher: Cambridge University Press

Published: 2015-01-19

Total Pages: 381

ISBN-13: 110701025X

DOWNLOAD EBOOK

The majority of empirical research in economics ignores the potential benefits of nonparametric methods, while the majority of advances in nonparametric theory ignores the problems faced in applied econometrics. This book helps bridge this gap between applied economists and theoretical nonparametric econometricians. It discusses in depth, and in terms that someone with only one year of graduate econometrics can understand, basic to advanced nonparametric methods. The analysis starts with density estimation and motivates the procedures through methods that should be familiar to the reader. It then moves on to kernel regression, estimation with discrete data, and advanced methods such as estimation with panel data and instrumental variables models. The book pays close attention to the issues that arise with programming, computing speed, and application. In each chapter, the methods discussed are applied to actual data, paying attention to presentation of results and potential pitfalls.


High-Dimensional Covariance Matrix Estimation

High-Dimensional Covariance Matrix Estimation

Author: Aygul Zagidullina

Publisher: Springer Nature

Published: 2021-10-29

Total Pages: 123

ISBN-13: 3030800652

DOWNLOAD EBOOK

This book presents covariance matrix estimation and related aspects of random matrix theory. It focuses on the sample covariance matrix estimator and provides a holistic description of its properties under two asymptotic regimes: the traditional one, and the high-dimensional regime that better fits the big data context. It draws attention to the deficiencies of standard statistical tools when used in the high-dimensional setting, and introduces the basic concepts and major results related to spectral statistics and random matrix theory under high-dimensional asymptotics in an understandable and reader-friendly way. The aim of this book is to inspire applied statisticians, econometricians, and machine learning practitioners who analyze high-dimensional data to apply the recent developments in their work.


Sparse Grid Quadrature in High Dimensions with Applications in Finance and Insurance

Sparse Grid Quadrature in High Dimensions with Applications in Finance and Insurance

Author: Markus Holtz

Publisher: Springer Science & Business Media

Published: 2010-10-22

Total Pages: 194

ISBN-13: 3642160042

DOWNLOAD EBOOK

This book deals with the numerical analysis and efficient numerical treatment of high-dimensional integrals using sparse grids and other dimension-wise integration techniques with applications to finance and insurance. The book focuses on providing insights into the interplay between coordinate transformations, effective dimensions and the convergence behaviour of sparse grid methods. The techniques, derivations and algorithms are illustrated by many examples, figures and code segments. Numerical experiments with applications from finance and insurance show that the approaches presented in this book can be faster and more accurate than (quasi-) Monte Carlo methods, even for integrands with hundreds of dimensions.


High-Dimensional Statistics

High-Dimensional Statistics

Author: Martin J. Wainwright

Publisher: Cambridge University Press

Published: 2019-02-21

Total Pages: 571

ISBN-13: 1108498027

DOWNLOAD EBOOK

A coherent introductory text from a groundbreaking researcher, focusing on clarity and motivation to build intuition and understanding.


The Oxford Handbook of Applied Nonparametric and Semiparametric Econometrics and Statistics

The Oxford Handbook of Applied Nonparametric and Semiparametric Econometrics and Statistics

Author: Jeffrey Racine

Publisher: Oxford University Press

Published: 2014-04

Total Pages: 562

ISBN-13: 0199857946

DOWNLOAD EBOOK

This volume, edited by Jeffrey Racine, Liangjun Su, and Aman Ullah, contains the latest research on nonparametric and semiparametric econometrics and statistics. Chapters by leading international econometricians and statisticians highlight the interface between econometrics and statistical methods for nonparametric and semiparametric procedures.


The Palgrave Handbook of Operations Research

The Palgrave Handbook of Operations Research

Author: Saïd Salhi

Publisher: Springer Nature

Published: 2022-07-07

Total Pages: 923

ISBN-13: 3030969355

DOWNLOAD EBOOK

Operations Research (OR) is a fast-evolving field, which is having a significant impact on its neighbouring disciplines of Business Analytics and Data Science, and on contemporary business and management practices. This handbook provides a comprehensive and cutting edge collection of studies in the area. Views differ on what should be included within the scope of OR. The editors of this volume have taken the view that an inclusive stance is the most helpful, both for theory and practice. Real-world problems often require consideration from both ‘softer’ and ‘harder’ perspectives and need consideration of both predictive and prescriptive problems. In accordance with this inclusive approach to OR, the book is divided into six parts, covering Discrete Optimization, Continuous Optimization, Heuristic Search Optimization, Forecasting, Simulation and Prediction, Problem Structuring and Behavioural OR, and finally some recent OR Applications. This wide-ranging handbook includes a culturally diverse collection of authors, with different perspectives and backgrounds around Operations Research. It will be of tremendous value to researchers, students and practitioners in the field of OR


Handbook of Research Methods and Applications in Empirical Microeconomics

Handbook of Research Methods and Applications in Empirical Microeconomics

Author: Hashimzade, Nigar

Publisher: Edward Elgar Publishing

Published: 2021-11-18

Total Pages: 672

ISBN-13: 1788976487

DOWNLOAD EBOOK

Written in a comprehensive yet accessible style, this Handbook introduces readers to a range of modern empirical methods with applications in microeconomics, illustrating how to use two of the most popular software packages, Stata and R, in microeconometric applications.


Statistical Foundations of Data Science

Statistical Foundations of Data Science

Author: Jianqing Fan

Publisher: CRC Press

Published: 2020-09-21

Total Pages: 942

ISBN-13: 0429527616

DOWNLOAD EBOOK

Statistical Foundations of Data Science gives a thorough introduction to commonly used statistical models, contemporary statistical machine learning techniques and algorithms, along with their mathematical insights and statistical theories. It aims to serve as a graduate-level textbook and a research monograph on high-dimensional statistics, sparsity and covariance learning, machine learning, and statistical inference. It includes ample exercises that involve both theoretical studies as well as empirical applications. The book begins with an introduction to the stylized features of big data and their impacts on statistical analysis. It then introduces multiple linear regression and expands the techniques of model building via nonparametric regression and kernel tricks. It provides a comprehensive account on sparsity explorations and model selections for multiple regression, generalized linear models, quantile regression, robust regression, hazards regression, among others. High-dimensional inference is also thoroughly addressed and so is feature screening. The book also provides a comprehensive account on high-dimensional covariance estimation, learning latent factors and hidden structures, as well as their applications to statistical estimation, inference, prediction and machine learning problems. It also introduces thoroughly statistical machine learning theory and methods for classification, clustering, and prediction. These include CART, random forests, boosting, support vector machines, clustering algorithms, sparse PCA, and deep learning.


Advances in Economics and Econometrics

Advances in Economics and Econometrics

Author: Econometric Society. World Congress

Publisher: Cambridge University Press

Published: 2013-05-27

Total Pages: 633

ISBN-13: 1107016061

DOWNLOAD EBOOK

The third volume of edited papers from the Tenth World Congress of the Econometric Society 2010.