Spaceflight Dynamics 1993
Author: Jerome Teles
Publisher:
Published: 1993
Total Pages: 786
ISBN-13:
DOWNLOAD EBOOKRead and Download eBook Full
Author: Jerome Teles
Publisher:
Published: 1993
Total Pages: 786
ISBN-13:
DOWNLOAD EBOOKAuthor: Thomas R. Kane
Publisher: McGraw-Hill Companies
Published: 1983
Total Pages: 458
ISBN-13:
DOWNLOAD EBOOKGood,No Highlights,No Markup,all pages are intact, Slight Shelfwear,may have the corners slightly dented, may have slight color changes/slightly damaged spine.
Author: Bong Wie
Publisher: AIAA
Published: 1998
Total Pages: 692
ISBN-13: 9781563472619
DOWNLOAD EBOOKA textbook that incorporates the latest methods used for the analysis of spacecraft orbital, attitude, and structural dynamics and control. Spacecraft dynamics is treated as a dynamic system with emphasis on practical applications, typical examples of which are the analysis and redesign of the pointing control system of the Hubble Space Telescope and the analysis of an active vibrations control for the COFS (Control of Flexible Structures) Mast Flight System. In addition to the three subjects mentioned above, dynamic systems modeling, analysis, and control are also discussed. Annotation copyrighted by Book News, Inc., Portland, OR
Author: Hanspeter Schaub
Publisher: AIAA
Published: 2003
Total Pages: 744
ISBN-13: 9781600860270
DOWNLOAD EBOOKAuthor: William E. Wiesel
Publisher: McGraw-Hill Science, Engineering & Mathematics
Published: 1997
Total Pages: 360
ISBN-13:
DOWNLOAD EBOOKDesigned for undergraduate courses in spacecraft dynamics and orbital mechanics, this new edition offers a three-dimensional treatment of dynamics discussions of rigid body dynamics, rocket trajectories, and the space environment. An expert in his field, author William E. Wiesel presents a wealth of information in an easy-to-understand manner without the daunting mathematical rigor of graduate texts. Reference is made to actual flight vehicles and satellites to give students background on the type of work currently being done in this field.
Author: Ulrich Walter
Publisher: John Wiley & Sons
Published: 2012-05-22
Total Pages: 597
ISBN-13: 3527410651
DOWNLOAD EBOOKAs a crewmember of the D-2 shuttle mission and a full professor of astronautics at the Technical University in Munich, Ulrich Walter is an acknowledged expert in the field. He is also the author of a number of popular science books on space flight. The second edition of this textbook is based on extensive teaching and his work with students, backed by numerous examples drawn from his own experience. With its end-of-chapter examples and problems, this work is suitable for graduate level or even undergraduate courses in space flight, as well as for professionals working in the space industry.
Author: Thomas R. Yechout
Publisher: AIAA
Published: 2003
Total Pages: 666
ISBN-13: 9781600860782
DOWNLOAD EBOOKBased on a 15-year successful approach to teaching aircraft flight mechanics at the US Air Force Academy, this text explains the concepts and derivations of equations for aircraft flight mechanics. It covers aircraft performance, static stability, aircraft dynamics stability and feedback control.
Author: Howard D. Curtis
Publisher: Elsevier
Published: 2009-10-26
Total Pages: 740
ISBN-13: 0080887848
DOWNLOAD EBOOKOrbital Mechanics for Engineering Students, Second Edition, provides an introduction to the basic concepts of space mechanics. These include vector kinematics in three dimensions; Newton's laws of motion and gravitation; relative motion; the vector-based solution of the classical two-body problem; derivation of Kepler's equations; orbits in three dimensions; preliminary orbit determination; and orbital maneuvers. The book also covers relative motion and the two-impulse rendezvous problem; interplanetary mission design using patched conics; rigid-body dynamics used to characterize the attitude of a space vehicle; satellite attitude dynamics; and the characteristics and design of multi-stage launch vehicles. Each chapter begins with an outline of key concepts and concludes with problems that are based on the material covered. This text is written for undergraduates who are studying orbital mechanics for the first time and have completed courses in physics, dynamics, and mathematics, including differential equations and applied linear algebra. Graduate students, researchers, and experienced practitioners will also find useful review materials in the book. - NEW: Reorganized and improved discusions of coordinate systems, new discussion on perturbations and quarternions - NEW: Increased coverage of attitude dynamics, including new Matlab algorithms and examples in chapter 10 - New examples and homework problems
Author: Robert C. Nelson
Publisher:
Published: 1998
Total Pages: 464
ISBN-13:
DOWNLOAD EBOOKThis edition of this this flight stability and controls guide features an unintimidating math level, full coverage of terminology, and expanded discussions of classical to modern control theory and autopilot designs. Extensive examples, problems, and historical notes, make this concise book a vital addition to the engineer's library.
Author: Anton H. de Ruiter
Publisher: John Wiley & Sons
Published: 2012-12-05
Total Pages: 562
ISBN-13: 1118403320
DOWNLOAD EBOOKProvides the basics of spacecraft orbital dynamics plus attitude dynamics and control, using vectrix notation Spacecraft Dynamics and Control: An Introduction presents the fundamentals of classical control in the context of spacecraft attitude control. This approach is particularly beneficial for the training of students in both of the subjects of classical control as well as its application to spacecraft attitude control. By using a physical system (a spacecraft) that the reader can visualize (rather than arbitrary transfer functions), it is easier to grasp the motivation for why topics in control theory are important, as well as the theory behind them. The entire treatment of both orbital and attitude dynamics makes use of vectrix notation, which is a tool that allows the user to write down any vector equation of motion without consideration of a reference frame. This is particularly suited to the treatment of multiple reference frames. Vectrix notation also makes a very clear distinction between a physical vector and its coordinate representation in a reference frame. This is very important in spacecraft dynamics and control problems, where often multiple coordinate representations are used (in different reference frames) for the same physical vector. Provides an accessible, practical aid for teaching and self-study with a layout enabling a fundamental understanding of the subject Fills a gap in the existing literature by providing an analytical toolbox offering the reader a lasting, rigorous methodology for approaching vector mechanics, a key element vital to new graduates and practicing engineers alike Delivers an outstanding resource for aerospace engineering students, and all those involved in the technical aspects of design and engineering in the space sector Contains numerous illustrations to accompany the written text. Problems are included to apply and extend the material in each chapter Essential reading for graduate level aerospace engineering students, aerospace professionals, researchers and engineers.