The breakup of the Space Shuttle Columbia as it reentered Earth's atmosphere on February 1, 2003, reminded the public--and NASA--of the grave risks posed to spacecraft by everything from insulating foam to space debris. Here, Alan Tribble presents a singular, up-to-date account of a wide range of less conspicuous but no less consequential environmental effects that can damage or cause poor performance of orbiting spacecraft. Conveying a wealth of insight into the nature of the space environment and how spacecraft interact with it, he covers design modifications aimed at eliminating or reducing such environmental effects as solar absorptance increases caused by self-contamination, materials erosion by atomic oxygen, electrical discharges due to spacecraft charging, degradation of electrical circuits by radiation, and bombardment by micrometeorites. This book is unique in that it bridges the gap between studies of the space environment as performed by space physicists and spacecraft design engineering as practiced by aerospace engineers.
A NATO Advanced Study Institute (ASI) on the Behavior of Systems in the Space Environment was held at the Atholl Palace Hotel, Pitlochry, Perthshire, Scotland, from July 7 through July 19, 1991. This publication is the Proceedings of the Institute. The NATO Advanced Study Institute Program of the NATO Science Committee is a unique and valuable forum, under whose auspices almost one thousand international tutorial meetings have been held since the inception of the program in 1959. The ASI is intended to be primarily a high-level teaching activity at which a carefully defined subject is presented in a systematic and coherently structured program. The subject is treated in considerable depth by lecturers eminent; in their :(ield and of international standing. The subject is presented to other scientists who either will already have specialized in the field or possess an advanced general background. The ASI is aimed at approximately the post-doctoral level. This ASI emphasized the basic physics of the space environment and the engineering aspects of the environment's interactions with spacecraft.
This book provides a comprehensive introduction to the physical phenomena that result from the interaction of the sun and the planets - often termed space weather. Physics of the Space Environment explores the basic processes in the Sun, in the interplanetary medium, in the near-Earth space, and down into the atmosphere. The first part of the book summarizes fundamental elements of transport theory relevant for the atmosphere, ionosphere and the magnetosphere. This theory is then applied to physical phenomena in the space environment. The fundamental physical processes are emphasized throughout, and basic concepts and methods are derived from first principles. This book is unique in its balanced treatment of space plasma and aeronomical phenomena. Students and researchers with a basic mathematics and physics background will find this book invaluable in the study of phenomena in the space environment.
The proceedings published in this book document and foster the goals of the 11th International Space Conference on “Protection of Materials and Structures from Space Environment” ICPMSE-11 to facilitate exchanges between members of the various engineering and science disciplines involved in the development of space materials. Contributions cover aspects of interaction with space environment of LEO, GEO, Deep Space, Planetary environments, ground-based qualification and in-flight experiments, as well as lessons learned from operational vehicles that are closely interrelated to disciplines of atmospheric sciences, solar-terrestrial interactions and space life sciences.
Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.