Case Studies in Spatial Point Process Modeling

Case Studies in Spatial Point Process Modeling

Author: Adrian Baddeley

Publisher: Springer Science & Business Media

Published: 2006-03-03

Total Pages: 312

ISBN-13: 0387311440

DOWNLOAD EBOOK

Point process statistics is successfully used in fields such as material science, human epidemiology, social sciences, animal epidemiology, biology, and seismology. Its further application depends greatly on good software and instructive case studies that show the way to successful work. This book satisfies this need by a presentation of the spatstat package and many statistical examples. Researchers, spatial statisticians and scientists from biology, geosciences, materials sciences and other fields will use this book as a helpful guide to the application of point process statistics. No other book presents so many well-founded point process case studies. From the reviews: "For those interested in analyzing their spatial data, the wide variatey of examples and approaches here give a good idea of the possibilities and suggest reasonable paths to explore." Michael Sherman for the Journal of the American Statistical Association, December 2006


An Introduction to the Theory of Point Processes

An Introduction to the Theory of Point Processes

Author: D.J. Daley

Publisher: Springer Science & Business Media

Published: 2006-04-10

Total Pages: 487

ISBN-13: 0387215646

DOWNLOAD EBOOK

Point processes and random measures find wide applicability in telecommunications, earthquakes, image analysis, spatial point patterns, and stereology, to name but a few areas. The authors have made a major reshaping of their work in their first edition of 1988 and now present their Introduction to the Theory of Point Processes in two volumes with sub-titles Elementary Theory and Models and General Theory and Structure. Volume One contains the introductory chapters from the first edition, together with an informal treatment of some of the later material intended to make it more accessible to readers primarily interested in models and applications. The main new material in this volume relates to marked point processes and to processes evolving in time, where the conditional intensity methodology provides a basis for model building, inference, and prediction. There are abundant examples whose purpose is both didactic and to illustrate further applications of the ideas and models that are the main substance of the text.


Random Point Processes in Time and Space

Random Point Processes in Time and Space

Author: Donald L. Snyder

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 489

ISBN-13: 1461231663

DOWNLOAD EBOOK

This book is a revision of Random Point Processes written by D. L. Snyder and published by John Wiley and Sons in 1975. More emphasis is given to point processes on multidimensional spaces, especially to pro cesses in two dimensions. This reflects the tremendous increase that has taken place in the use of point-process models for the description of data from which images of objects of interest are formed in a wide variety of scientific and engineering disciplines. A new chapter, Translated Poisson Processes, has been added, and several of the chapters of the fIrst edition have been modifIed to accommodate this new material. Some parts of the fIrst edition have been deleted to make room. Chapter 7 of the fIrst edition, which was about general marked point-processes, has been eliminated, but much of the material appears elsewhere in the new text. With some re luctance, we concluded it necessary to eliminate the topic of hypothesis testing for point-process models. Much of the material of the fIrst edition was motivated by the use of point-process models in applications at the Biomedical Computer Labo ratory of Washington University, as is evident from the following excerpt from the Preface to the first edition. "It was Jerome R. Cox, Jr. , founder and [1974] director of Washington University's Biomedical Computer Laboratory, who ftrst interested me [D. L. S.


Point Process Calculus in Time and Space

Point Process Calculus in Time and Space

Author: Pierre Brémaud

Publisher: Springer

Published: 2020-12-06

Total Pages: 556

ISBN-13: 9783030627522

DOWNLOAD EBOOK

This book provides an introduction to the theory and applications of point processes, both in time and in space. Presenting the two components of point process calculus, the martingale calculus and the Palm calculus, it aims to develop the computational skills needed for the study of stochastic models involving point processes, providing enough of the general theory for the reader to reach a technical level sufficient for most applications. Classical and not-so-classical models are examined in detail, including Poisson–Cox, renewal, cluster and branching (Kerstan–Hawkes) point processes.The applications covered in this text (queueing, information theory, stochastic geometry and signal analysis) have been chosen not only for their intrinsic interest but also because they illustrate the theory. Written in a rigorous but not overly abstract style, the book will be accessible to earnest beginners with a basic training in probability but will also interest upper graduate students and experienced researchers.


Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA

Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA

Author: Elias T. Krainski

Publisher: CRC Press

Published: 2018-12-07

Total Pages: 284

ISBN-13: 0429629850

DOWNLOAD EBOOK

Modeling spatial and spatio-temporal continuous processes is an important and challenging problem in spatial statistics. Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA describes in detail the stochastic partial differential equations (SPDE) approach for modeling continuous spatial processes with a Matérn covariance, which has been implemented using the integrated nested Laplace approximation (INLA) in the R-INLA package. Key concepts about modeling spatial processes and the SPDE approach are explained with examples using simulated data and real applications. This book has been authored by leading experts in spatial statistics, including the main developers of the INLA and SPDE methodologies and the R-INLA package. It also includes a wide range of applications: * Spatial and spatio-temporal models for continuous outcomes * Analysis of spatial and spatio-temporal point patterns * Coregionalization spatial and spatio-temporal models * Measurement error spatial models * Modeling preferential sampling * Spatial and spatio-temporal models with physical barriers * Survival analysis with spatial effects * Dynamic space-time regression * Spatial and spatio-temporal models for extremes * Hurdle models with spatial effects * Penalized Complexity priors for spatial models All the examples in the book are fully reproducible. Further information about this book, as well as the R code and datasets used, is available from the book website at http://www.r-inla.org/spde-book. The tools described in this book will be useful to researchers in many fields such as biostatistics, spatial statistics, environmental sciences, epidemiology, ecology and others. Graduate and Ph.D. students will also find this book and associated files a valuable resource to learn INLA and the SPDE approach for spatial modeling.


Encyclopedia of GIS

Encyclopedia of GIS

Author: Shashi Shekhar

Publisher: Springer Science & Business Media

Published: 2007-12-12

Total Pages: 1392

ISBN-13: 038730858X

DOWNLOAD EBOOK

The Encyclopedia of GIS provides a comprehensive and authoritative guide, contributed by experts and peer-reviewed for accuracy, and alphabetically arranged for convenient access. The entries explain key software and processes used by geographers and computational scientists. Major overviews are provided for nearly 200 topics: Geoinformatics, Spatial Cognition, and Location-Based Services and more. Shorter entries define specific terms and concepts. The reference will be published as a print volume with abundant black and white art, and simultaneously as an XML online reference with hyperlinked citations, cross-references, four-color art, links to web-based maps, and other interactive features.


Statistical Analysis and Modelling of Spatial Point Patterns

Statistical Analysis and Modelling of Spatial Point Patterns

Author: Dr. Janine Illian

Publisher: John Wiley & Sons

Published: 2008-04-15

Total Pages: 560

ISBN-13: 9780470725153

DOWNLOAD EBOOK

Spatial point processes are mathematical models used to describe and analyse the geometrical structure of patterns formed by objects that are irregularly or randomly distributed in one-, two- or three-dimensional space. Examples include locations of trees in a forest, blood particles on a glass plate, galaxies in the universe, and particle centres in samples of material. Numerous aspects of the nature of a specific spatial point pattern may be described using the appropriate statistical methods. Statistical Analysis and Modelling of Spatial Point Patterns provides a practical guide to the use of these specialised methods. The application-oriented approach helps demonstrate the benefits of this increasingly popular branch of statistics to a broad audience. The book: Provides an introduction to spatial point patterns for researchers across numerous areas of application Adopts an extremely accessible style, allowing the non-statistician complete understanding Describes the process of extracting knowledge from the data, emphasising the marked point process Demonstrates the analysis of complex datasets, using applied examples from areas including biology, forestry, and materials science Features a supplementary website containing example datasets. Statistical Analysis and Modelling of Spatial Point Patterns is ideally suited for researchers in the many areas of application, including environmental statistics, ecology, physics, materials science, geostatistics, and biology. It is also suitable for students of statistics, mathematics, computer science, biology and geoinformatics.


Spatial Point Patterns

Spatial Point Patterns

Author: Adrian Baddeley

Publisher: CRC Press

Published: 2015-11-11

Total Pages: 830

ISBN-13: 1482210215

DOWNLOAD EBOOK

Modern Statistical Methodology and Software for Analyzing Spatial Point PatternsSpatial Point Patterns: Methodology and Applications with R shows scientific researchers and applied statisticians from a wide range of fields how to analyze their spatial point pattern data. Making the techniques accessible to non-mathematicians, the authors draw on th


Statistical Analysis of Environmental Space-Time Processes

Statistical Analysis of Environmental Space-Time Processes

Author: Nhu D. Le

Publisher: Springer Science & Business Media

Published: 2006-09-13

Total Pages: 338

ISBN-13: 0387354298

DOWNLOAD EBOOK

This book provides a broad introduction to the subject of environmental space-time processes, addressing the role of uncertainty. It covers a spectrum of technical matters from measurement to environmental epidemiology to risk assessment. It showcases non-stationary vector-valued processes, while treating stationarity as a special case. In particular, with members of their research group the authors developed within a hierarchical Bayesian framework, the new statistical approaches presented in the book for analyzing, modeling, and monitoring environmental spatio-temporal processes. Furthermore they indicate new directions for development.


Markov Processes for Stochastic Modeling

Markov Processes for Stochastic Modeling

Author: Oliver Ibe

Publisher: Newnes

Published: 2013-05-22

Total Pages: 515

ISBN-13: 0124078397

DOWNLOAD EBOOK

Markov processes are processes that have limited memory. In particular, their dependence on the past is only through the previous state. They are used to model the behavior of many systems including communications systems, transportation networks, image segmentation and analysis, biological systems and DNA sequence analysis, random atomic motion and diffusion in physics, social mobility, population studies, epidemiology, animal and insect migration, queueing systems, resource management, dams, financial engineering, actuarial science, and decision systems. Covering a wide range of areas of application of Markov processes, this second edition is revised to highlight the most important aspects as well as the most recent trends and applications of Markov processes. The author spent over 16 years in the industry before returning to academia, and he has applied many of the principles covered in this book in multiple research projects. Therefore, this is an applications-oriented book that also includes enough theory to provide a solid ground in the subject for the reader. - Presents both the theory and applications of the different aspects of Markov processes - Includes numerous solved examples as well as detailed diagrams that make it easier to understand the principle being presented - Discusses different applications of hidden Markov models, such as DNA sequence analysis and speech analysis.