Eine vielversprechende Technologie zur Maximierung der Bandbreiteneffizienz in der breitbandigen drahtlosen Kommunikation ist die Raum-Zeit-Kodierung. Theorie und Praxis verbindend, ist dieses Buch die erste umfassende Diskussion von Grundlagen und designorientierten Aspekten von Raum-Zeit-Codes. Single-Carrier und Multi-Carrier-Übertragungen für Einzel- und Mehrnutzerkommunikation werden behandelt.
Annotation "This resource takes professionals step by step from the basics of MIMO through various coding techniques, to critical topics such as multiplexing and packet transmission. Practical examples are emphasized and mathematics is kept to a minimum, so readers can quickly and thoroughly understand the essentials of MIMO. The book takes a systems view of MIMO technology that helps professionals analyze the benefits and drawbacks of any MIMO system."--BOOK JACKET.Title Summary field provided by Blackwell North America, Inc. All Rights Reserved.
Fully revised and updated version of the successful "AdvancedWireless Communications" Wireless communications continue to attract the attention ofboth research community and industry. Since the first edition waspublished significant research and industry activities have broughtthe fourth generation (4G) of wireless communications systemscloser to implementation and standardization. "Advanced Wireless Communications" continues to provide acomparative study of enabling technologies for 4G. This secondedition has been revised and updated and now includes additionalinformation on the components of common air interface, includingthe area of space time coding , multicarrier modulation especiallyOFDM, MIMO, cognitive radio and cooperative transmission. Ideal for students and engineers in research and development inthe field of wireless communications, the second edition ofAdvanced Wireless Communications also gives an understanding tocurrent approaches for engineers in telecomm operators, governmentand regulatory institutions. New features include: Brand new chapter covering linear precoding in MIMO channelsbased on convex optimization theory. Material based on game theory modelling encompassing problemsof adjacent cell interference, flexible spectra sharing andcooperation between the nodes in ad hoc networks. Presents and discusses the latest schemes for interferencesuppression in ultra wide band (UWB) cognitive systems. Discusses the cooperative transmission and more details onpositioning.
Now available in a three-volume set, this updated and expanded edition of the bestselling The Digital Signal Processing Handbook continues to provide the engineering community with authoritative coverage of the fundamental and specialized aspects of information-bearing signals in digital form. Encompassing essential background material, technical details, standards, and software, the second edition reflects cutting-edge information on signal processing algorithms and protocols related to speech, audio, multimedia, and video processing technology associated with standards ranging from WiMax to MP3 audio, low-power/high-performance DSPs, color image processing, and chips on video. Drawing on the experience of leading engineers, researchers, and scholars, the three-volume set contains 29 new chapters that address multimedia and Internet technologies, tomography, radar systems, architecture, standards, and future applications in speech, acoustics, video, radar, and telecommunications. This volume, Wireless, Networking, Radar, Sensor Array Processing, and Nonlinear Signal Processing, provides complete coverage of the foundations of signal processing related to wireless, radar, space–time coding, and mobile communications, together with associated applications to networking, storage, and communications.
Turbo Code Applications: a journey from a paper to realization presents c- temporary applications of turbo codes in thirteen technical chapters. Each chapter focuses on a particular communication technology utilizing turbo codes, and they are written by experts who have been working in related th areas from around the world. This book is published to celebrate the 10 year anniversary of turbo codes invention by Claude Berrou Alain Glavieux and Punya Thitimajshima (1993-2003). As known for more than a decade, turbo code is the astonishing error control coding scheme which its perf- mance closes to the Shannon’s limit. It has been honored consequently as one of the seventeen great innovations during the ?rst ?fty years of information theory foundation. With the amazing performance compared to that of other existing codes, turbo codes have been adopted into many communication s- tems and incorporated with various modern industrial standards. Numerous research works have been reported from universities and advance companies worldwide. Evidently, it has successfully revolutionized the digital commu- cations. Turbo code and its successors have been applied in most communications startingfromthegroundorterrestrialsystemsofdatastorage,ADSLmodem, and ?ber optic communications. Subsequently, it moves up to the air channel applications by employing to wireless communication systems, and then ?ies up to the space by using in digital video broadcasting and satellite com- nications. Undoubtedly, with the excellent error correction potential, it has been selected to support data transmission in space exploring system as well.
Based on cutting-edge research projects in the field, this book (part of a comprehensive 4-volume series) provides the latest details and covers the most impactful aspects of mobile, wireless, and broadband communications development. These books present key systems and enabling technologies in a clear and accessible manner, offering you a detailed roadmap the future evolution of next generation communications. Other volumes cover Networks, Services and Applications; Reconfigurability; and Ad Hoc Networks.
Coding for MIMO Communication Systems is a comprehensive introduction and overview to the various emerging coding techniques developed for MIMO communication systems. The basics of wireless communications and fundamental issues of MIMO channel capacity are introduced and the space-time block and trellis coding techniques are covered in detail. Other signaling schemes for MIMO channels are also considered, including spatial multiplexing, concatenated coding and iterative decoding for MIMO systems, and space-time coding for non-coherent MIMO channels. Practical issues including channel correlation, channel estimation and antenna selection are also explored, with problems at the end of each chapter to clarify many important topics. A comprehensive book on coding for MIMO techniques covering main strategies Theories and practical issues on MIMO communications are examined in detail Easy to follow and accessible for both beginners and experienced practitioners in the field References at the end of each chapter for further reading Can be used with ease as a research book, or a textbook on a graduate or advanced undergraduate level course This book is aimed at advanced undergraduate and postgraduate students, researchers and practitioners in industry, as well as individuals working for government, military, science and technology institutions who would like to learn more about coding for MIMO communication systems.
This book covers the fundamental principles of space-time coding for wireless communications over multiple-input multiple-output (MIMO) channels, and sets out practical coding methods for achieving the performance improvements predicted by the theory. Starting with background material on wireless communications and the capacity of MIMO channels, the book then reviews design criteria for space-time codes. A detailed treatment of the theory behind space-time block codes then leads on to an in-depth discussion of space-time trellis codes. The book continues with discussion of differential space-time modulation, BLAST and some other space-time processing methods and the final chapter addresses additional topics in space-time coding. The theory and practice sections can be used independently of each other. Written by one of the inventors of space-time block coding, this book is ideal for a graduate student familiar with the basics of digital communications, and for engineers implementing the theory in real systems.