Nuclear propulsion : an introduction / Claudio Bruno -- Nuclear-thermal-rocket propulsion systems / Timothy J. Lawrence -- Application of ion thrusters to high-thrust, high-specific-impulse nuclear electric missions / D.G. Fearn -- High-power and high-thrust-density electric propulsion for in-space transportation / Monika Auweter-Kurtz and Helmut Kurtz -- Review of reactor configurations for space nuclear electric propulsion and surface power considerations / Roger X. Lenard -- Nuclear safety : legal aspects and policy recommendations / Roger X. Lenard -- Radioactivity, doses, and risks in nuclear propulsion / Alessio Del Rossi and Claudio Bruno -- The Chernobyl accident : a detailed account / Alessio del Rossi and Claudio Bruno.
Spacecraft require electrical energy. This energy must be available in the outer reaches of the solar system where sunlight is very faint. It must be available through lunar nights that last for 14 days, through long periods of dark and cold at the higher latitudes on Mars, and in high-radiation fields such as those around Jupiter. Radioisotope power systems (RPSs) are the only available power source that can operate unconstrained in these environments for the long periods of time needed to accomplish many missions, and plutonium-238 (238Pu) is the only practical isotope for fueling them. Plutonium-238 does not occur in nature. The committee does not believe that there is any additional 238Pu (or any operational 238Pu production facilities) available anywhere in the world.The total amount of 238Pu available for NASA is fixed, and essentially all of it is already dedicated to support several pending missions-the Mars Science Laboratory, Discovery 12, the Outer Planets Flagship 1 (OPF 1), and (perhaps) a small number of additional missions with a very small demand for 238Pu. If the status quo persists, the United States will not be able to provide RPSs for any subsequent missions.
Space Nuclear Propulsion for Human Mars Exploration identifies primary technical and programmatic challenges, merits, and risks for developing and demonstrating space nuclear propulsion technologies of interest to future exploration missions. This report presents key milestones and a top-level development and demonstration roadmap for performance nuclear thermal propulsion and nuclear electric propulsion systems and identifies missions that could be enabled by successful development of each technology.
Considers Space Nuclear Auxiliary Power program and plans for utilization of isotopic, reactor, or solar powered space electric power systems. Includes "Preliminary SNAPSHOT-1 Performance Summary," AEC report, p. 135-230.
Steam Generators for Nuclear Power Plants examines all phases of the lifecycle of nuclear steam generators (NSGs), components which are essential for the efficient and safe operation of light water reactors (LWRs). Coverage spans the design, manufacturing, operation and maintenance, fitness-for-service, and long-term operation of these key reactor parts. Part One opens with a chapter that provides fundamental background on NSG engineering and operational experiences. Following chapters review the different NSG concepts, describe NSG design and manufacturing, and consider the particularities of SGs for VVER reactors. Part Two focuses on NSG operation and maintenance, starting with an overview of the activities required to support reliable and safe operation. The discussion then moves on to tubing vibration, followed by the water and steam cycle chemistry issues relevant to the NSG lifecycle. Finally, a number of chapters focus on the key issue of corrosion in NSGs from different angles. This book serves as a timely resource for professionals involved in all phases of the NSG lifecycle, from design, manufacturing, operation and maintenance, to fitness-for-service and long-term operation. It is also intended as a valuable resource for students and researchers interested in a range of topics relating to NSG lifecycle management. - Fulfills the need for a detailed reference on steam generators for nuclear power plants - Contains comprehensive coverage of all phases of the nuclear steam generator lifecycle, from design, manufacturing, operation and maintenance, to fitness-for-service and long-term operation in one convenient volume - Presents contributions from key manufacturers and research institutes and universities
This book covers the fundamentals of thermodynamics required to understand electrical power generation systems, honing in on the application of these principles to nuclear reactor power systems. It includes all the necessary information regarding the fundamental laws to gain a complete understanding and apply them specifically to the challenges of operating nuclear plants. Beginning with definitions of thermodynamic variables such as temperature, pressure and specific volume, the book then explains the laws in detail, focusing on pivotal concepts such as enthalpy and entropy, irreversibility, availability, and Maxwell relations. Specific applications of the fundamentals to Brayton and Rankine cycles for power generation are considered in-depth, in support of the book’s core goal- providing an examination of how the thermodynamic principles are applied to the design, operation and safety analysis of current and projected reactor systems. Detailed appendices cover metric and English system units and conversions, detailed steam and gas tables, heat transfer properties, and nuclear reactor system descriptions.
This book discusses advanced Small Modular Reactors (SMRs) as a way to provide safe, clean, and affordable nuclear power options. The advanced SMRs currently under development in the U.S. represent a variety of sizes, technology options and deployment scenarios. These advanced reactors, envisioned to vary in size from a couple megawatts up to hundreds of megawatts can be used for power generation, process heat, desalination, or other industrial uses. In-depth chapters describe how advanced SMRs offer multiple advantages, such as relatively small size, reduced capital investment, location flexibility, and provisions for incremental power additions. SMRs also offer distinct safeguards, security and nonproliferation advantages. The authors present a thorough examination of the technology and defend methods by which the new generation of nuclear power plants known as GEN-IV can safely be used as an efficient source of renewable energy. Provides a unique and innovative approach to the implementation of Small Modular Reactor as part of GEN-IV technology; Discusses how Small Modular Reactors (SMRs) can deliver a viable alternative to Nuclear Power Plants (NPPs); Presents an argument defending the need for nuclear power plant as a source of energy, its efficiency and cost effectiveness, as well as safety related issues.
Handbook of Generation IV Nuclear Reactors, Second Edition is a fully revised and updated comprehensive resource on the latest research and advances in generation IV nuclear reactor concepts. Editor Igor Pioro and his team of expert contributors have updated every chapter to reflect advances in the field since the first edition published in 2016. The book teaches the reader about available technologies, future prospects and the feasibility of each concept presented, equipping them users with a strong skillset which they can apply to their own work and research. - Provides a fully updated, revised and comprehensive handbook dedicated entirely to generation IV nuclear reactors - Includes new trends and developments since the first publication, as well as brand new case studies and appendices - Covers the latest research, developments and design information surrounding generation IV nuclear reactors
The advantages of space nuclear fission power systems can be summarized as: compact size; low to moderate mass; long operating lifetimes; the ability to operate in extremely hostile environments; operation independent of the distance from the Sun or of the orientation to the Sun; and high system reliability and autonomy. In fact, as power requirements approach the tens of kilowatts and megawatts, fission nuclear energy appears to be the only realistic power option. The building blocks for space nuclear fission electric power systems include the reactor as the heat source, power generation equipment to convert the thermal energy to electrical power, waste heat rejection radiators and shielding to protect the spacecraft payload. The power generation equipment can take the form of either static electrical conversion elements that have no moving parts (e.g., thermoelectric or thermionic) or dynamic conversion components (e.g., the Rankine, Brayton or Stirling cycle). The U.S. has only demonstrated in space, or even in full systems in a simulated ground environment, uranium-zirconium-hydride reactor power plants. These power plants were designed for a limited lifetime of one year and the mass of scaled up power plants would probably be unacceptable to meet future mission needs. Extensive development was performed on the liquid-metal cooled SP-100 power systems and components were well on their way to being tested in a relevant environment. A generic flight system design was completed for a seven year operating lifetime power plant, but not built or tested. The former USSR made extensive use of space reactors as a power source for radar ocean reconnaissance satellites. They launched some 31 missions using reactors with thermoelectric power conversion systems and two with thermionic converters. Current activities are centered on Fission Surface Power for lunar applications. Activities are concentrating on demonstrating component readiness. This book will discuss the components that make up a nuclear fission power system, the principal requirements and safety issues, various development programs, status of developments, and development issues.