Foliations on Riemannian Manifolds and Submanifolds

Foliations on Riemannian Manifolds and Submanifolds

Author: Vladimir Rovenski

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 296

ISBN-13: 1461242703

DOWNLOAD EBOOK

This monograph is based on the author's results on the Riemannian ge ometry of foliations with nonnegative mixed curvature and on the geometry of sub manifolds with generators (rulings) in a Riemannian space of nonnegative curvature. The main idea is that such foliated (sub) manifolds can be decom posed when the dimension of the leaves (generators) is large. The methods of investigation are mostly synthetic. The work is divided into two parts, consisting of seven chapters and three appendices. Appendix A was written jointly with V. Toponogov. Part 1 is devoted to the Riemannian geometry of foliations. In the first few sections of Chapter I we give a survey of the basic results on foliated smooth manifolds (Sections 1.1-1.3), and finish in Section 1.4 with a discussion of the key problem of this work: the role of Riemannian curvature in the study of foliations on manifolds and submanifolds.


Space Groups for Solid State Scientists

Space Groups for Solid State Scientists

Author: Michael Glazer

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 356

ISBN-13: 0080964125

DOWNLOAD EBOOK

This Second Edition provides solid state scientists, who are not necessarily experts in crystallography, with an understandable and comprehensive guide to the new International Tables for Crystallography. The basic ideas of symmetry, lattices, point groups, and space groups are explained in a clear and detailed manner. Notation is introduced in a step-by-step way so that the reader is supplied with the tools necessary to derive and apply space group information. Of particular interest in this second edition are the discussions of space groups application to such timely topics as high-temperature superconductors, phase transitions, semiconductor superlattices, incommensurate modulation, and icosahedral symmetry.


Introduction to Complex Hyperbolic Spaces

Introduction to Complex Hyperbolic Spaces

Author: Serge Lang

Publisher: Springer Science & Business Media

Published: 1987-05-04

Total Pages: 290

ISBN-13: 9780387964478

DOWNLOAD EBOOK

Since the appearance of Kobayashi's book, there have been several re sults at the basic level of hyperbolic spaces, for instance Brody's theorem, and results of Green, Kiernan, Kobayashi, Noguchi, etc. which make it worthwhile to have a systematic exposition. Although of necessity I re produce some theorems from Kobayashi, I take a different direction, with different applications in mind, so the present book does not super sede Kobayashi's. My interest in these matters stems from their relations with diophan tine geometry. Indeed, if X is a projective variety over the complex numbers, then I conjecture that X is hyperbolic if and only if X has only a finite number of rational points in every finitely generated field over the rational numbers. There are also a number of subsidiary conjectures related to this one. These conjectures are qualitative. Vojta has made quantitative conjectures by relating the Second Main Theorem of Nevan linna theory to the theory of heights, and he has conjectured bounds on heights stemming from inequalities having to do with diophantine approximations and implying both classical and modern conjectures. Noguchi has looked at the function field case and made substantial progress, after the line started by Grauert and Grauert-Reckziegel and continued by a recent paper of Riebesehl. The book is divided into three main parts: the basic complex analytic theory, differential geometric aspects, and Nevanlinna theory. Several chapters of this book are logically independent of each other.


Topological, Differential and Conformal Geometry of Surfaces

Topological, Differential and Conformal Geometry of Surfaces

Author: Norbert A'Campo

Publisher: Springer Nature

Published: 2021-10-27

Total Pages: 282

ISBN-13: 3030890325

DOWNLOAD EBOOK

This book provides an introduction to the main geometric structures that are carried by compact surfaces, with an emphasis on the classical theory of Riemann surfaces. It first covers the prerequisites, including the basics of differential forms, the Poincaré Lemma, the Morse Lemma, the classification of compact connected oriented surfaces, Stokes’ Theorem, fixed point theorems and rigidity theorems. There is also a novel presentation of planar hyperbolic geometry. Moving on to more advanced concepts, it covers topics such as Riemannian metrics, the isometric torsion-free connection on vector fields, the Ansatz of Koszul, the Gauss–Bonnet Theorem, and integrability. These concepts are then used for the study of Riemann surfaces. One of the focal points is the Uniformization Theorem for compact surfaces, an elementary proof of which is given via a property of the energy functional. Among numerous other results, there is also a proof of Chow’s Theorem on compact holomorphic submanifolds in complex projective spaces. Based on lecture courses given by the author, the book will be accessible to undergraduates and graduates interested in the analytic theory of Riemann surfaces.


Papers

Papers

Author: Carnegie Institution of Washington. Geophysical Laboratory

Publisher:

Published: 1920

Total Pages: 356

ISBN-13:

DOWNLOAD EBOOK


Phasing in Crystallography

Phasing in Crystallography

Author: Carmelo Giacovazzo

Publisher: Oxford University Press, USA

Published: 2014

Total Pages: 433

ISBN-13: 0199686998

DOWNLOAD EBOOK

The book describes phasing techniques in modern crystallography. The main text is dedicated to their simple description, and further mathematical details are contained in the appendices. Practical aspects are described for each specific method, making it a useful tool for the daily work of practising crystallographers.