This rigorous book is a complete and up-to-date reference for the Csound system from the perspective of its main developers and power users. It explains the system, including the basic modes of operation and its programming language; it explores the many ways users can interact with the system, including the latest features; and it describes key applications such as instrument design, signal processing, and creative electronic music composition. The Csound system has been adopted by many educational institutions as part of their undergraduate and graduate teaching programs, and it is used by practitioners worldwide. This book is suitable for students, lecturers, composers, sound designers, programmers, and researchers in the areas of music, sound, and audio signal processing.
This book discusses the use of advanced techniques to produce and understand music in a digital way. It gathers the first-ever English-language proceedings of the Conference on Sound and Music Technology (CSMT), which was held in Xiamen, China in 2018. As a leading event, the CSMT reflects the latest advances in acoustic and music technologies in China. Sound and technology are more closely linked than most people assume. For example, signal-processing methods form the basis of music feature extraction, while mathematics provides an objective means of representing current musicological theories and discovering new ones. Moreover, machine-learning methods include popular deep learning algorithms and are used in a broad range of contexts, from discovering patterns in music features to producing music. As these proceedings demonstrate, modern technologies not only offer new ways to create music, but can also help people perceive sound in innovative new ways.
How a team of musicians, engineers, computer scientists, and psychologists developed computer music as an academic field and ushered in the era of digital music. In the 1960s, a team of Stanford musicians, engineers, computer scientists, and psychologists used computing in an entirely novel way: to produce and manipulate sound and create the sonic basis of new musical compositions. This group of interdisciplinary researchers at the nascent Center for Computer Research in Music and Acoustics (CCRMA, pronounced “karma”) helped to develop computer music as an academic field, invent the technologies that underlie it, and usher in the age of digital music. In The Sound of Innovation, Andrew Nelson chronicles the history of CCRMA, tracing its origins in Stanford's Artificial Intelligence Laboratory through its present-day influence on Silicon Valley and digital music groups worldwide. Nelson emphasizes CCRMA's interdisciplinarity, which stimulates creativity at the intersections of fields; its commitment to open sharing and users; and its pioneering commercial engagement. He shows that Stanford's outsized influence on the emergence of digital music came from the intertwining of these three modes, which brought together diverse supporters with different aims around a field of shared interest. Nelson thus challenges long-standing assumptions about the divisions between art and science, between the humanities and technology, and between academic research and commercial applications, showing how the story of a small group of musicians reveals substantial insights about innovation. Nelson draws on extensive archival research and dozens of interviews with digital music pioneers; the book's website provides access to original historic documents and other material.
Since the 1950s, Sound and Music Computing (SMC) research has had a profound impact on the development of culture and technology in our post-industrial society. SMC research approaches the whole sound and music communication chain from a multidisciplinary point of view. By combining scientific, technological and artistic methodologies it aims at understanding, modeling, representing and producing sound and music using computational approaches. This book, by describing the state of the art in SMC research, gives hints of future developments, whose general purpose will be to bridge the semantic gap, the hiatus that currently separates sound from sense and sense from sound.
A must-have introduction that bridges the gap between music and computing The rise in number of composer-programmers has given cause for an essential resource that addresses the gap between music and computing and looks at the many different software packages that deal with music technology. This up-to-date book fulfills that demand and deals with both the practical use of technology in music as well as the principles behind the discipline. Aimed at musicians exploring computers and technologists engaged with music, this unique guide merges the two worlds so that both musicians and computer scientists can benefit. Defines computer music and offers a solid introduction to representing music on a computer Examines computer music software, the musical instrument digital interface, virtual studios, file formats, and more Shares recording tips and tricks as well as exercises at the end of each section to enhance your learning experience Reviews sound analysis, processing, synthesis, networks, composition, and modeling Assuming little to no prior experience in computer programming, this engaging book is an ideal starting point for discovering the beauty that can be created when technology and music unite.
Provides an introduction to the nature, synthesis and transformation of sound which forms the basis of digital sound processing for music and multimedia. Background information in computer techniques is included so that you can write computer algorithms to realise new processes central to your own musical and sound processing ideas. Finally, material is inlcuded to explain the way in which people contribute to the development of new kinds of performance and composition systems. Key features of the book include: · Contents structured into free-standing parts for easy navigation · `Flow lines' to suggest alternative paths through the book, depending on the primary interest of the reader. · Practical examples are contained on a supporting website. Digital Sound Processing can be used by anyone, whether from an audio engineering, musical or music technology perspective. Digital sound processing in its various spheres - music technology, studio systems and multimedia - are witnessing the dawning of a new age. The opportunities for involvement in the expansion and development of sound transformation, musical performance and composition are unprecedented. The supporting website (www.york.ac.uk/inst/mustech/dspmm.htm) contains working examples of computer techniques, music synthesis and sound processing.
This book constitutes the refereed proceedings of the 8th International Conference on Evolutionary Computation in Combinatorial Optimization, EvoMUSART 2019, held in Leipzig, Germany, in April 2019, co-located with the Evo*2019 events EuroGP, EvoCOP and EvoApplications. The 16 revised full papers presented were carefully reviewed and selected from 24 submissions. The papers cover a wide range of topics and application areas, including: visual art and music generation, analysis, and interpretation; sound synthesis; architecture; video; poetry; design; and other creative tasks.
This textbook provides both profound technological knowledge and a comprehensive treatment of essential topics in music processing and music information retrieval. Including numerous examples, figures, and exercises, this book is suited for students, lecturers, and researchers working in audio engineering, computer science, multimedia, and musicology. The book consists of eight chapters. The first two cover foundations of music representations and the Fourier transform—concepts that are then used throughout the book. In the subsequent chapters, concrete music processing tasks serve as a starting point. Each of these chapters is organized in a similar fashion and starts with a general description of the music processing scenario at hand before integrating it into a wider context. It then discusses—in a mathematically rigorous way—important techniques and algorithms that are generally applicable to a wide range of analysis, classification, and retrieval problems. At the same time, the techniques are directly applied to a specific music processing task. By mixing theory and practice, the book’s goal is to offer detailed technological insights as well as a deep understanding of music processing applications. Each chapter ends with a section that includes links to the research literature, suggestions for further reading, a list of references, and exercises. The chapters are organized in a modular fashion, thus offering lecturers and readers many ways to choose, rearrange or supplement the material. Accordingly, selected chapters or individual sections can easily be integrated into courses on general multimedia, information science, signal processing, music informatics, or the digital humanities.
Teach Your Students How to Use Computing to Explore Powerful and Creative IdeasIn the twenty-first century, computers have become indispensable in music making, distribution, performance, and consumption. Making Music with Computers: Creative Programming in Python introduces important concepts and skills necessary to generate music with computers.