Single-valued neutrosophic sets (SVNSs) handling the uncertainties characterized by truth, indeterminacy, and falsity membership degrees, area more flexible way to capture uncertainty.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
Cut sets, decomposition theorem and representation theorem have a great influence on the realization of the transformation of fuzzy sets and classical sets, and the single-valued neutrosophic multisets (SVNMSs) as the generalization of fuzzy sets, which cut sets, decomposition theorem and representation theorem have the similar effects, so they need to be studied in depth. In this paper, the decomposition theorem, representation theorem and the application of a new similarity measures of SVNMSs are studied by using theoretical analysis and calculations. The following are the main results: (1) The notions, operation and operational properties of the cut sets and strong cut sets of SVNMSs are introduced and discussed; (2) The decomposition theorem and representation theorem of SVNMSs are established and rigorously proved.
Fuzzy information in venture capital can be well expressed by neutrosophic numbers, and TODIM method is an effective tool for multi-attribute decision-making. The distance measure is an essential step in TODIM method. The keystone of this paper is to define several new distance measures, in particular the improved interval neutrosophic Euclidean distance, and these measures are applied in the TODIM method for multi-attribute decision-making.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
The processing of uncertainty information has gradually became one of the hot issues in arti cial intelligence eld, and the infor- mation measures of uncertainty information processing are of importance. Single value neutrosophic sets (SVNSs) provide us a exible mathematical framework to process uncertainty information. In this paper, we mainly consider the measures of SVNSs. The existing information measures mostly are constructed based on the two typical inclusion relations about single value neutrosopgic sets. However, there exist some practical problems that do not apply to the two typical inclusion relations. Therefore, there exists another inclusion relation which is called the type-3 inclusion relation about SVNSs.
This sixth volume of Collected Papers includes 74 papers comprising 974 pages on (theoretic and applied) neutrosophics, written between 2015-2021 by the author alone or in collaboration with the following 121 co-authors from 19 countries: Mohamed Abdel-Basset, Abdel Nasser H. Zaied, Abduallah Gamal, Amir Abdullah, Firoz Ahmad, Nadeem Ahmad, Ahmad Yusuf Adhami, Ahmed Aboelfetouh, Ahmed Mostafa Khalil, Shariful Alam, W. Alharbi, Ali Hassan, Mumtaz Ali, Amira S. Ashour, Asmaa Atef, Assia Bakali, Ayoub Bahnasse, A. A. Azzam, Willem K.M. Brauers, Bui Cong Cuong, Fausto Cavallaro, Ahmet Çevik, Robby I. Chandra, Kalaivani Chandran, Victor Chang, Chang Su Kim, Jyotir Moy Chatterjee, Victor Christianto, Chunxin Bo, Mihaela Colhon, Shyamal Dalapati, Arindam Dey, Dunqian Cao, Fahad Alsharari, Faruk Karaaslan, Aleksandra Fedajev, Daniela Gîfu, Hina Gulzar, Haitham A. El-Ghareeb, Masooma Raza Hashmi, Hewayda El-Ghawalby, Hoang Viet Long, Le Hoang Son, F. Nirmala Irudayam, Branislav Ivanov, S. Jafari, Jeong Gon Lee, Milena Jevtić, Sudan Jha, Junhui Kim, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Darjan Karabašević, Songül Karabatak, Abdullah Kargın, M. Karthika, Ieva Meidute-Kavaliauskiene, Madad Khan, Majid Khan, Manju Khari, Kifayat Ullah, K. Kishore, Kul Hur, Santanu Kumar Patro, Prem Kumar Singh, Raghvendra Kumar, Tapan Kumar Roy, Malayalan Lathamaheswari, Luu Quoc Dat, T. Madhumathi, Tahir Mahmood, Mladjan Maksimovic, Gunasekaran Manogaran, Nivetha Martin, M. Kasi Mayan, Mai Mohamed, Mohamed Talea, Muhammad Akram, Muhammad Gulistan, Raja Muhammad Hashim, Muhammad Riaz, Muhammad Saeed, Rana Muhammad Zulqarnain, Nada A. Nabeeh, Deivanayagampillai Nagarajan, Xenia Negrea, Nguyen Xuan Thao, Jagan M. Obbineni, Angelo de Oliveira, M. Parimala, Gabrijela Popovic, Ishaani Priyadarshini, Yaser Saber, Mehmet Șahin, Said Broumi, A. A. Salama, M. Saleh, Ganeshsree Selvachandran, Dönüș Șengür, Shio Gai Quek, Songtao Shao, Dragiša Stanujkić, Surapati Pramanik, Swathi Sundari Sundaramoorthy, Mirela Teodorescu, Selçuk Topal, Muhammed Turhan, Alptekin Ulutaș, Luige Vlădăreanu, Victor Vlădăreanu, Ştefan Vlăduţescu, Dan Valeriu Voinea, Volkan Duran, Navneet Yadav, Yanhui Guo, Naveed Yaqoob, Yongquan Zhou, Young Bae Jun, Xiaohong Zhang, Xiao Long Xin, Edmundas Kazimieras Zavadskas.
In the epoch of Internet of Things (IoT), we are confronted five challenges (Connectivity, Value, Security, Telepresence and Intelligence) with complex structures. IoT industry decision making is critically important for countries or societies to enhance the effectiveness and validity of leadership, which can greatly accelerate industrialized and large-scale development. In the case of IoT industry decision evaluation, the essential problem arises serious incompleteness, impreciseness, subjectivity and incertitude. Interval neutrosophic set (INS), disposing the indeterminacy portrayed by truth membership T, indeterminacy membership I, and falsity membership F with interval form, is a more viable and effective means to seize indeterminacy.