This book for the first time introduces neutrosophic groups, neutrosophic semigroups, neutrosophic loops and neutrosophic groupoids and their neutrosophic N-structures.The special feature of this book is that it tries to analyze when the general neutrosophic algebraic structures like loops, semigroups and groupoids satisfy some of the classical theorems for finite groups viz. Lagrange, Sylow, and Cauchy.This is mainly carried out to know more about these neutrosophic algebraic structures and their neutrosophic N-algebraic structures.
Smarandache algebraic structures that inter-relates two distinct algebraic structures and analyzes them relatively can be considered a paradigm shift in the study of algebraic structures. For instance, the algebraic structure Smarandache semigroup simultaneously involves both group and semigroup.Recently, Neutrosophic Algebraic Structures were introduced. This book ventures to define Smarandache Neutrosophic Algebraic Structures.Here, Smarandache neutrosophic structures of groups, semigroups, loops and groupoids and their N-ary structures are introduced and analyzed. There is a lot of scope for interested researchers to develop these concepts.
The concept of neutrosophy and indeterminacy I was introduced by Smarandache, to deal with neutralies. Since then the notions of neutrosophic rings, neutrosophic semigroups and other algebraic structures have been developed. Neutrosophic duplets and their properties were introduced by Florentin and other researchers have pursued this study.In this paper authors determine the neutrosophic duplets in neutrosophic rings of characteristic zero.
In this book, the authors define several new types of soft neutrosophic algebraic structures over neutrosophic algebraic structures and we study their generalizations. These soft neutrosophic algebraic structures are basically parameterized collections of neutrosophic sub-algebraic structures of the neutrosophic algebraic structure. An important feature of this book is that the authors introduce the soft neutrosophic group ring, soft neutrosophic semigroup ring with its generalization, and soft mixed neutrosophic N-algebraic structure over neutrosophic group ring, then the neutrosophic semigroup ring and mixed neutrosophic N-algebraic structure respectively.
In this book, we define several new neutrosophic algebraic structures and their related properties. The main focus of this book is to study the important class of neutrosophic rings such as neutrosophic LA-semigroup ring, neutrosophic loop ring, neutrosophic groupoid ring and so on. We also construct their generalization in each case to study these neutrosophic algebraic structures in a broader sense. The indeterminacy element “I“ gives rise to a bigger algebraic structure than the classical algebraic structures. It mainly classifies the algebraic structures in three categories such as: neutrosophic algebraic structures, strong neutrosophic algebraic structures, and classical algebraic structures respectively. This reveals the fact that a classic algebraic structure is a part of the neutrosophic algebraic structures. This opens a new way for the researcher to think in a broader way to visualize these vast neutrosophic algebraic structures.
This book consists of seven chapters. In chapter one we introduced neutrosophic ideals (bi, quasi, interior, (m,n) ideals) and discussed the properties of these ideals. Moreover, we characterized regular and intra-regular AG-groupoids using these ideals. In chapter two we introduced neutrosophic minimal ideals in AG-groupoids and discussed several properties. In chapter three, we introduced different neutrosophic regularities of AG-groupoids. Further we discussed several condition where these classes are equivalent. In chapter four, we introduced neutrosophic M-systems and neutrosophic p-systems in non-associative algebraic structure and discussed their relations with neutrosophic ideals. In chapter five, we introduced neutrosophic strongly regular AG-groupoids and characterized this structure using neutrosophic ideals. In chapter six, we introduced the concept of neutrosophic ideal, neutrosophic prime ideal, neutrosophic bi-ideal and neutrosophic quasi ideal of a neutrosophic semigroup. With counter example we have shown that the union and product of two neutrosophic quasi-ideals of a neutrosophic semigroup need not be a neutrosophic quasi-ideal of neutrosophic semigroup. We have also shown that every neutrosophic bi-ideal of a neutrosophic semigroup need not be a neutrosophic quasi-ideal of a neutrosophic semigroup. We have also characterized the regularity and intra-regularity of a neutrosophic semigroup. In chapter seven, we introduced neutrosophic left almost rings and discussed several properties using their neutrosophic ideals. Keywords: neutrosophic set, algebraic structure, neutrosophic ideal, AG-groupoids, neutrosophic minimal ideals, neutrosophic regularities, neutrosophic M-systems, neutrosophic p-systems, neutrosophic strongly regular AG-groupoids neutrosophic prime ideal, neutrosophic bi-ideal, neutrosophic quasi ideal, neutrosophic semigroup, neutrosophic left almost rings
In all classical algebraic structures, the Laws of Compositions on a given set are well-defined. But this is a restrictive case, because there are many more situations in science and in any domain of knowledge when a law of composition defined on a set may be only partially-defined (or partially true) and partially-undefined (or partially false), that we call NeutroDefined, or totally undefined (totally false) that we call AntiDefined.