Solving Systems of Polynomial Equations

Solving Systems of Polynomial Equations

Author: Bernd Sturmfels

Publisher: American Mathematical Soc.

Published: 2002

Total Pages: 162

ISBN-13: 0821832514

DOWNLOAD EBOOK

Bridging a number of mathematical disciplines, and exposing many facets of systems of polynomial equations, Bernd Sturmfels's study covers a wide spectrum of mathematical techniques and algorithms, both symbolic and numerical.


Solving Polynomial Equations

Solving Polynomial Equations

Author: Alicia Dickenstein

Publisher: Springer Science & Business Media

Published: 2005-04-27

Total Pages: 433

ISBN-13: 3540243267

DOWNLOAD EBOOK

This book provides a general introduction to modern mathematical aspects in computing with multivariate polynomials and in solving algebraic systems. It presents the state of the art in several symbolic, numeric, and symbolic-numeric techniques, including effective and algorithmic methods in algebraic geometry and computational algebra, complexity issues, and applications ranging from statistics and geometric modelling to robotics and vision. Graduate students, as well as researchers in related areas, will find an excellent introduction to currently interesting topics. These cover Groebner and border bases, multivariate resultants, residues, primary decomposition, multivariate polynomial factorization, homotopy continuation, complexity issues, and their applications.


Numerically Solving Polynomial Systems with Bertini

Numerically Solving Polynomial Systems with Bertini

Author: Daniel J. Bates

Publisher: SIAM

Published: 2013-11-08

Total Pages: 372

ISBN-13: 1611972698

DOWNLOAD EBOOK

This book is a guide to concepts and practice in numerical algebraic geometry ? the solution of systems of polynomial equations by numerical methods. Through numerous examples, the authors show how to apply the well-received and widely used open-source Bertini software package to compute solutions, including a detailed manual on syntax and usage options. The authors also maintain a complementary web page where readers can find supplementary materials and Bertini input files. Numerically Solving Polynomial Systems with Bertini approaches numerical algebraic geometry from a user's point of view with numerous examples of how Bertini is applicable to polynomial systems. It treats the fundamental task of solving a given polynomial system and describes the latest advances in the field, including algorithms for intersecting and projecting algebraic sets, methods for treating singular sets, the nascent field of real numerical algebraic geometry, and applications to large polynomial systems arising from differential equations. Those who wish to solve polynomial systems can start gently by finding isolated solutions to small systems, advance rapidly to using algorithms for finding positive-dimensional solution sets (curves, surfaces, etc.), and learn how to use parallel computers on large problems. These techniques are of interest to engineers and scientists in fields where polynomial equations arise, including robotics, control theory, economics, physics, numerical PDEs, and computational chemistry.


Solving Polynomial Equation Systems

Solving Polynomial Equation Systems

Author: Teo Mora

Publisher:

Published: 2003

Total Pages: 439

ISBN-13: 9780511178887

DOWNLOAD EBOOK

Mora covers the classical theory of finding roots of a univariate polynomial, emphasising computational aspects. He shows that solving a polynomial equation really means finding algorithms that help one manipulate roots rather than simply computing them; to that end he also surveys algorithms for factorizing univariate polynomials.


The Numerical Solution Of Systems Of Polynomials Arising In Engineering And Science

The Numerical Solution Of Systems Of Polynomials Arising In Engineering And Science

Author: Andrew J Sommese

Publisher: World Scientific

Published: 2005-03-21

Total Pages: 425

ISBN-13: 9814480886

DOWNLOAD EBOOK

Written by the founders of the new and expanding field of numerical algebraic geometry, this is the first book that uses an algebraic-geometric approach to the numerical solution of polynomial systems and also the first one to treat numerical methods for finding positive dimensional solution sets. The text covers the full theory from methods developed for isolated solutions in the 1980's to the most recent research on positive dimensional sets.


Solving Polynomial Equation Systems I

Solving Polynomial Equation Systems I

Author: Teo Mora

Publisher: Cambridge University Press

Published: 2003-03-27

Total Pages: 452

ISBN-13: 9780521811545

DOWNLOAD EBOOK

Computational algebra; computational number theory; commutative algebra; handbook; reference; algorithmic; modern.


Applications of Computational Algebraic Geometry

Applications of Computational Algebraic Geometry

Author: David A. Cox

Publisher: American Mathematical Soc.

Published: 1998

Total Pages: 188

ISBN-13: 0821807501

DOWNLOAD EBOOK

This book introduces readers to key ideas and applications of computational algebraic geometry. Beginning with the discovery of Gröbner bases and fueled by the advent of modern computers and the rediscovery of resultants, computational algebraic geometry has grown rapidly in importance. The fact that "crunching equations" is now as easy as "crunching numbers" has had a profound impact in recent years. At the same time, the mathematics used in computational algebraic geometry is unusually elegant and accessible, which makes the subject easy to learn and easy to apply. This book begins with an introduction to Gröbner bases and resultants, then discusses some of the more recent methods for solving systems of polynomial equations. A sampler of possible applications follows, including computer-aided geometric design, complex information systems, integer programming, and algebraic coding theory. The lectures in this book assume no previous acquaintance with the material.


Solving Transcendental Equations

Solving Transcendental Equations

Author: John P. Boyd

Publisher: SIAM

Published: 2014-09-23

Total Pages: 446

ISBN-13: 161197352X

DOWNLOAD EBOOK

Transcendental equations arise in every branch of science and engineering. While most of these equations are easy to solve, some are not, and that is where this book serves as the mathematical equivalent of a skydiver's reserve parachute--not always needed, but indispensible when it is. The author's goal is to teach the art of finding the root of a single algebraic equation or a pair of such equations.