Solving Ordinary Differential Equations I

Solving Ordinary Differential Equations I

Author: Ernst Hairer

Publisher: Springer Science & Business Media

Published: 2008-04-03

Total Pages: 541

ISBN-13: 354078862X

DOWNLOAD EBOOK

This book deals with methods for solving nonstiff ordinary differential equations. The first chapter describes the historical development of the classical theory, and the second chapter includes a modern treatment of Runge-Kutta and extrapolation methods. Chapter three begins with the classical theory of multistep methods, and concludes with the theory of general linear methods. The reader will benefit from many illustrations, a historical and didactic approach, and computer programs which help him/her learn to solve all kinds of ordinary differential equations. This new edition has been rewritten and new material has been included.


Solving Ordinary Differential Equations I

Solving Ordinary Differential Equations I

Author: Ernst Hairer

Publisher: Springer Science & Business Media

Published: 2008-04-16

Total Pages: 540

ISBN-13: 3540566708

DOWNLOAD EBOOK

This book deals with methods for solving nonstiff ordinary differential equations. The first chapter describes the historical development of the classical theory, and the second chapter includes a modern treatment of Runge-Kutta and extrapolation methods. Chapter three begins with the classical theory of multistep methods, and concludes with the theory of general linear methods. The reader will benefit from many illustrations, a historical and didactic approach, and computer programs which help him/her learn to solve all kinds of ordinary differential equations. This new edition has been rewritten and new material has been included.


Solving Ordinary Differential Equations II

Solving Ordinary Differential Equations II

Author: Ernst Hairer

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 615

ISBN-13: 3662099470

DOWNLOAD EBOOK

"Whatever regrets may be, we have done our best." (Sir Ernest Shackleton, turning back on 9 January 1909 at 88°23' South.) Brahms struggled for 20 years to write his first symphony. Compared to this, the 10 years we have been working on these two volumes may even appear short. This second volume treats stiff differential equations and differential alge braic equations. It contains three chapters: Chapter IV on one-step (Runge Kutta) methods for stiff problems, Chapter Von multistep methods for stiff problems, and Chapter VI on singular perturbation and differential-algebraic equations. Each chapter is divided into sections. Usually the first sections of a chapter are of an introductory nature, explain numerical phenomena and exhibit numerical results. Investigations of a more theoretieal nature are presented in the later sections of each chapter. As in Volume I, the formulas, theorems, tables and figures are numbered consecutively in each section and indicate, in addition, the section num ber. In cross references to other chapters the (latin) chapter number is put first. References to the bibliography are again by "author" plus "year" in parentheses. The bibliography again contains only those papers which are discussed in the text and is in no way meant to be complete.


Ordinary Differential Equations and Their Solutions

Ordinary Differential Equations and Their Solutions

Author: George Moseley Murphy

Publisher: Courier Corporation

Published: 2011-01-01

Total Pages: 466

ISBN-13: 0486485919

DOWNLOAD EBOOK

This treatment presents most of the methods for solving ordinary differential equations and systematic arrangements of more than 2,000 equations and their solutions. The material is organized so that standard equations can be easily found. Plus, the substantial number and variety of equations promises an exact equation or a sufficiently similar one. 1960 edition.


Numerical Solution of Ordinary Differential Equations

Numerical Solution of Ordinary Differential Equations

Author: L.F. Shampine

Publisher: Routledge

Published: 2018-10-24

Total Pages: 632

ISBN-13: 1351427555

DOWNLOAD EBOOK

This new work is an introduction to the numerical solution of the initial value problem for a system of ordinary differential equations. The first three chapters are general in nature, and chapters 4 through 8 derive the basic numerical methods, prove their convergence, study their stability and consider how to implement them effectively. The book focuses on the most important methods in practice and develops them fully, uses examples throughout, and emphasizes practical problem-solving methods.


Handbook of Exact Solutions for Ordinary Differential Equations

Handbook of Exact Solutions for Ordinary Differential Equations

Author: Valentin F. Zaitsev

Publisher: CRC Press

Published: 2002-10-28

Total Pages: 815

ISBN-13: 1420035339

DOWNLOAD EBOOK

Exact solutions of differential equations continue to play an important role in the understanding of many phenomena and processes throughout the natural sciences in that they can verify the correctness of or estimate errors in solutions reached by numerical, asymptotic, and approximate analytical methods. The new edition of this bestselling handboo


Programming for Computations - Python

Programming for Computations - Python

Author: Svein Linge

Publisher: Springer

Published: 2016-07-25

Total Pages: 244

ISBN-13: 3319324284

DOWNLOAD EBOOK

This book presents computer programming as a key method for solving mathematical problems. There are two versions of the book, one for MATLAB and one for Python. The book was inspired by the Springer book TCSE 6: A Primer on Scientific Programming with Python (by Langtangen), but the style is more accessible and concise, in keeping with the needs of engineering students. The book outlines the shortest possible path from no previous experience with programming to a set of skills that allows the students to write simple programs for solving common mathematical problems with numerical methods in engineering and science courses. The emphasis is on generic algorithms, clean design of programs, use of functions, and automatic tests for verification.


Ordinary Differential Equations

Ordinary Differential Equations

Author: Morris Tenenbaum

Publisher: Courier Corporation

Published: 1985-10-01

Total Pages: 852

ISBN-13: 0486649407

DOWNLOAD EBOOK

Skillfully organized introductory text examines origin of differential equations, then defines basic terms and outlines the general solution of a differential equation. Subsequent sections deal with integrating factors; dilution and accretion problems; linearization of first order systems; Laplace Transforms; Newton's Interpolation Formulas, more.


Handbook of Ordinary Differential Equations

Handbook of Ordinary Differential Equations

Author: Andrei D. Polyanin

Publisher: CRC Press

Published: 2017-11-15

Total Pages: 1584

ISBN-13: 1351643916

DOWNLOAD EBOOK

The Handbook of Ordinary Differential Equations: Exact Solutions, Methods, and Problems, is an exceptional and complete reference for scientists and engineers as it contains over 7,000 ordinary differential equations with solutions. This book contains more equations and methods used in the field than any other book currently available. Included in the handbook are exact, asymptotic, approximate analytical, numerical symbolic and qualitative methods that are used for solving and analyzing linear and nonlinear equations. The authors also present formulas for effective construction of solutions and many different equations arising in various applications like heat transfer, elasticity, hydrodynamics and more. This extensive handbook is the perfect resource for engineers and scientists searching for an exhaustive reservoir of information on ordinary differential equations.


Ordinary Differential Equations and Linear Algebra

Ordinary Differential Equations and Linear Algebra

Author: Todd Kapitula

Publisher: SIAM

Published: 2015-11-17

Total Pages: 308

ISBN-13: 1611974097

DOWNLOAD EBOOK

Ordinary differential equations (ODEs) and linear algebra are foundational postcalculus mathematics courses in the sciences. The goal of this text is to help students master both subject areas in a one-semester course. Linear algebra is developed first, with an eye toward solving linear systems of ODEs. A computer algebra system is used for intermediate calculations (Gaussian elimination, complicated integrals, etc.); however, the text is not tailored toward a particular system. Ordinary Differential Equations and Linear Algebra: A Systems Approach systematically develops the linear algebra needed to solve systems of ODEs and includes over 15 distinct applications of the theory, many of which are not typically seen in a textbook at this level (e.g., lead poisoning, SIR models, digital filters). It emphasizes mathematical modeling and contains group projects at the end of each chapter that allow students to more fully explore the interaction between the modeling of a system, the solution of the model, and the resulting physical description.