Solved Problems In Transport Phenomena: Energy Transfer

Solved Problems In Transport Phenomena: Energy Transfer

Author: Ismail Tosun

Publisher: World Scientific

Published: 2023-08-28

Total Pages: 398

ISBN-13: 9811274312

DOWNLOAD EBOOK

Transport Phenomena is an umbrella term to describe the fundamental processes of momentum, energy, and mass transfer.This unique compendium covers energy transfer at the microscopic and macroscopic levels in the three stages of problem-solving, namely formulation, simplification, and mathematical solution. The book does not overwhelm students with a large repertoire of problems. Instead, it highlights clear and easy presentation to help students grasp the methodology in problem-solving.This useful reference text benefits upper undergraduate and graduate level students in the fields of chemical, mechanical, petroleum, and environmental engineering.


Solved Problems In Transport Phenomena: Momentum Transfer

Solved Problems In Transport Phenomena: Momentum Transfer

Author: Ismail Tosun

Publisher: World Scientific

Published: 2022-10-04

Total Pages: 277

ISBN-13: 9811256268

DOWNLOAD EBOOK

Transport Phenomena is an umbrella term to describe the fundamental processes of momentum, energy, and mass transfer.This unique compendium covers momentum transfer at the microscopic and macroscopic levels in the three stages of problem-solving, namely formulation, simplification, and mathematical solution. The book does not overwhelm students with a large repertoire of problems. Instead, it highlights clear and easy presentation to help students grasp the methodology in problem-solving.This useful reference text benefits upper undergraduate and graduate level students in the fields of chemical, mechanical, civil, and environmental engineering.Related Link(s)


Transport Phenomena

Transport Phenomena

Author: Estéban Saatdjian

Publisher: John Wiley & Sons

Published: 2000-11-08

Total Pages: 440

ISBN-13:

DOWNLOAD EBOOK

This invaluable text, provides a much-needed overview of both the theoretical development, as well as appropriate numerical solutions, for all aspects of transport phenomena. It contains a basic introduction to many aspects of fluid mechanics, heat transfer and mass transfer, and the conservation equations for mass, energy and momentum are discussed with reference to engineering applications. Heat transfer by conduction, radiation, natural and forced convection is studied, as well as mass transfer and incompressible fluid mechanics. The second part of the book deals with numerical methods used to solve the problems encountered earlier. The basic concepts of finite difference and finite volume methods are presented. Other subjects usually covered in mathematical textbooks such as vector and tensor analysis, Laplace transforms, and Runge-Kutta methods are discussed in the Appendices. * Offers comprehensive coverage of both transport phenomena and numerical and analytical solutions to the problems. * Includes comprehensive coverage of numerical techniques. * Provides real-life problems and solutions, which are vital to the understanding and implementation of applications. This work will be welcomed not only by senior and graduate students in mechanical, aeronautical and chemical engineering, but also for engineers practising in these fields.


An Introduction to Transport Phenomena in Materials Engineering

An Introduction to Transport Phenomena in Materials Engineering

Author: David R. Gaskell

Publisher: CRC Press

Published: 2024-01-24

Total Pages: 614

ISBN-13: 1000996301

DOWNLOAD EBOOK

This book elucidates the important role of conduction, convection, and radiation heat transfer, mass transport in solids and fluids, and internal and external fluid flow in the behavior of materials processes. These phenomena are critical in materials engineering because of the connection of transport to the evolution and distribution of microstructural properties during processing. From making choices in the derivation of fundamental conservation equations, to using scaling (order-of-magnitude) analysis showing relationships among different phenomena, to giving examples of how to represent real systems by simple models, the book takes the reader through the fundamentals of transport phenomena applied to materials processing. Fully updated, this third edition of a classic textbook offers a significant shift from the previous editions in the approach to this subject, representing an evolution incorporating the original ideas and extending them to a more comprehensive approach to the topic. FEATURES Introduces order-of-magnitude (scaling) analysis and uses it to quickly obtain approximate solutions for complicated problems throughout the book Focuses on building models to solve practical problems Adds new sections on non-Newtonian flows, turbulence, and measurement of heat transfer coefficients Offers expanded sections on thermal resistance networks, transient heat transfer, two-phase diffusion mass transfer, and flow in porous media Features more homework problems, mostly on the analysis of practical problems, and new examples from a much broader range of materials classes and processes, including metals, ceramics, polymers, and electronic materials Includes homework problems for the review of the mathematics required for a course based on this book and connects the theory represented by mathematics with real-world problems This book is aimed at advanced engineering undergraduates and students early in their graduate studies, as well as practicing engineers interested in understanding the behavior of heat and mass transfer and fluid flow during materials processing. While it is designed primarily for materials engineering education, it is a good reference for practicing materials engineers looking for insight into phenomena controlling their processes. A solutions manual, lecture slides, and figure slides are available for qualifying adopting professors.


Transport Phenomena

Transport Phenomena

Author: R. Byron Bird

Publisher: John Wiley & Sons

Published: 2006-12-11

Total Pages: 935

ISBN-13: 0470115394

DOWNLOAD EBOOK

Transport Phenomena has been revised to include deeper and more extensive coverage of heat transfer, enlarged discussion of dimensional analysis, a new chapter on flow of polymers, systematic discussions of convective momentum,and energy. Topics also include mass transport, momentum transport and energy transport, which are presented at three different scales: molecular, microscopic and macroscopic. If this is your first look at Transport Phenomena you'll quickly learn that its balanced introduction to the subject of transport phenomena is the foundation of its long-standing success.


Transport Phenomena in Dispersed Media

Transport Phenomena in Dispersed Media

Author: G. I. Kelbaliyev

Publisher: CRC Press

Published: 2019-09-26

Total Pages: 434

ISBN-13: 0429522444

DOWNLOAD EBOOK

Transport Phenomena in Dispersed Media addresses the main problems associated with the transfer of heat, mass and momentum. The authors focus on the analytical solutions of the mass and heat transfer equations; the theoretical problems of coalescence, coagulation, aggregation and fragmentation of dispersed particles; the rheology of structured aggregate and kinetically stable disperse systems; the precipitation of particles in a turbulent flow; the evolution of the distribution function; the stochastic counterpart of the mass transfer equations; the dissipation of energy in disperse systems; and many other problems that distinguish this book from existing publications. Key Selling Features Covers all technological processes taking place in the oil and gas complex, as well as in the petrochemical industry Presents new original solutions for calculating design as well as for the development and implementation of processes of chemical technology Organized to first provide an extensive review of each chapter topic, solve specific problems, and then review the solutions with the reader Contains complex mathematical expressions for practical calculations Compares results obtained on the basis of mathematical models with experimental data


Transport and Surface Phenomena

Transport and Surface Phenomena

Author: Kamil Wichterle

Publisher: Elsevier

Published: 2020-05-08

Total Pages: 318

ISBN-13: 0128189940

DOWNLOAD EBOOK

Transport and Surface Phenomena provides an overview of the key transfers taking place in reactions and explores how calculations of momentum, energy and mass transfers can help researchers develop the most appropriate, cost effective solutions to chemical problems. Beginning with a thorough overview of the nature of transport phenomena, the book goes on to explore balances in transport phenomena, including key equations for assessing balances, before concluding by outlining mathematical methods for solving the transfer equations. Drawing on the experience of its expert authors, it is an accessible introduction to the field for students, researchers and professionals working in chemical engineering. The book and is also ideal for those in related fields such as physical chemistry, energy engineering, and materials science, for whom a deeper understanding of these interactions could enhance their work. Presents fundamental background knowledge and experimental methods in a clear and accessible style Cements information through problems for the reader to solve, making the book ideal for learning, teaching and refreshing subject knowledge Outlines mathematical approaches for solving energy transfers to show applications of the key equations in practice


Transport Phenomena in Materials Processing

Transport Phenomena in Materials Processing

Author: David R. Poirier

Publisher: Springer

Published: 2016-12-06

Total Pages: 653

ISBN-13: 3319480901

DOWNLOAD EBOOK

This text provides a teachable and readable approach to transport phenomena (momentum, heat, and mass transport) by providing numerous examples and applications, which are particularly important to metallurgical, ceramic, and materials engineers. Because the authors feel that it is important for students and practicing engineers to visualize the physical situations, they have attempted to lead the reader through the development and solution of the relevant differential equations by applying the familiar principles of conservation to numerous situations and by including many worked examples in each chapter. The book is organized in a manner characteristic of other texts in transport phenomena. Section I deals with the properties and mechanics of fluid motion; Section II with thermal properties and heat transfer; and Section III with diffusion and mass transfer. The authors depart from tradition by building on a presumed understanding of the relationships between the structure and properties of matter, particularly in the chapters devoted to the transport properties (viscosity, thermal conductivity, and the diffusion coefficients). In addition, generous portions of the text, numerous examples, and many problems at the ends of the chapters apply transport phenomena to materials processing.