This solutions manual accompanies the 7th edition of Inorganic chemistry by Mark Weller, Tina Overton, Jonathan Rourke and Fraser Armstrong. As you master each chapter in Inorganic Chemistry, having detailed solutions handy allows you to confirm your answers and develop your ability to think through the problem-solving process.
Fifty years ago solution chemistry occupied a major fraction of physical chemistry textbooks, and dealt mainly with classical thermodynamics, phase equilibria, and non-equilibrium phenomena, especially those related to electrochemistry. Much has happened in the intervening period, with tremendous advances in theory and the development of important new experimental techniques. This book brings the reader through the developments from classical macroscopic descriptions to more modern microscopic details.
This textbook offers over 400 problems and solutions in structural inorganic chemistry for senior undergraduates and beginning graduates. It is an updated companion text to Advanced Structural Inorganic Chemistry by the same authors. The new edition adds over 100 new problems and three new chapters on metal compounds and bioinorganic chemistry.
A readable, informative, fascinating entry on each one of the 100-odd chemical elements, arranged alphabetically from actinium to zirconium. Each entry comprises an explanation of where the element's name comes from, followed by Body element (the role it plays in living things), Element ofhistory (how and when it was discovered), Economic element (what it is used for), Environmental element (where it occurs, how much), Chemical element (facts, figures and narrative), and Element of surprise (an amazing, little-known fact about it). A wonderful 'dipping into' source for the familyreference shelf and for students.
Atkins' Physical Chemistry: Molecular Thermodynamics and Kinetics is designed for use on the second semester of a quantum-first physical chemistry course. Based on the hugely popular Atkins' Physical Chemistry, this volume approaches molecular thermodynamics with the assumption that students will have studied quantum mechanics in their first semester. The exceptional quality of previous editions has been built upon to make this new edition of Atkins' Physical Chemistry even more closely suited to the needs of both lecturers and students. Re-organised into discrete 'topics', the text is more flexible to teach from and more readable for students. Now in its eleventh edition, the text has been enhanced with additional learning features and maths support to demonstrate the absolute centrality of mathematics to physical chemistry. Increasing the digestibility of the text in this new approach, the reader is brought to a question, then the math is used to show how it can be answered and progress made. The expanded and redistributed maths support also includes new 'Chemist's toolkits' which provide students with succinct reminders of mathematical concepts and techniques right where they need them. Checklists of key concepts at the end of each topic add to the extensive learning support provided throughout the book, to reinforce the main take-home messages in each section. The coupling of the broad coverage of the subject with a structure and use of pedagogy that is even more innovative will ensure Atkins' Physical Chemistry remains the textbook of choice for studying physical chemistry.
The lanthanides and actinides (the f elements) are rarely studied in detail by chemistry undergraduates. More often they appear as an afterthought in bonding, spectroscopy, magnetism, coordination chemistry, and organometallics courses. This is largely because of a lack of an accessible text treating the chemistry of these elements in one cover. Moreover, the placement of lanthanides and actinides in the closing pages of standard inorganic chemistry text books serves to marginalise these elements further. The f elements has therefore been written to fill a gap in the undergraduate chemistry textbook market. It covers much of the fundamental chemistry of the lanthanide and actinide elements, including coordination chemistry, solid state compounds, organometallic chemistry, electronic spectroscopy, and magnetism. Many comparisons are made between the chemistry of the lanthanides and actinides and that of the transition elements, which is generally much more familiar to undergraduate chemistry students. The book uses the chemistry of the f elements as a vehicle for the communication of several important chemical concepts that are not usually discussed in detail in undergraduate courses, for example the chemical consequences of relativity and the lanthanide and actinide contractions. Many important modern applications of f element chemistry, e.g. the use of actinides in nuclear power generation and of the lanthanides in magnetic resonance imaging and catalytic converters in motor vehicle exhausts, are also discussed in depth.
The growth of inorganic chemistry during the last 50 years has made it difficult for the student to assimilate all the factual information available. This book is designed to help by showing how a chemist uses the Periodic Table to organize and process this mass of information. It includes a detailed discussion of the important horizontal, vertical, and diagonal trends in the properties of the atoms of the elements and their compounds. These basic principles can then be applied to more detailed problems in modern inorganic chemistry.