Electromagnetic Simulation Using the FDTD Method

Electromagnetic Simulation Using the FDTD Method

Author: Dennis M. Sullivan

Publisher: John Wiley & Sons

Published: 2013-05-17

Total Pages: 169

ISBN-13: 1118646630

DOWNLOAD EBOOK

A straightforward, easy-to-read introduction to the finite-difference time-domain (FDTD) method Finite-difference time-domain (FDTD) is one of the primary computational electrodynamics modeling techniques available. Since it is a time-domain method, FDTD solutions can cover a wide frequency range with a single simulation run and treat nonlinear material properties in a natural way. Written in a tutorial fashion, starting with the simplest programs and guiding the reader up from one-dimensional to the more complex, three-dimensional programs, this book provides a simple, yet comprehensive introduction to the most widely used method for electromagnetic simulation. This fully updated edition presents many new applications, including the FDTD method being used in the design and analysis of highly resonant radio frequency (RF) coils often used for MRI. Each chapter contains a concise explanation of an essential concept and instruction on its implementation into computer code. Projects that increase in complexity are included, ranging from simulations in free space to propagation in dispersive media. Additionally, the text offers downloadable MATLAB and C programming languages from the book support site (http://booksupport.wiley.com). Simple to read and classroom-tested, Electromagnetic Simulation Using the FDTD Method is a useful reference for practicing engineers as well as undergraduate and graduate engineering students.


Numerical Electromagnetics

Numerical Electromagnetics

Author: Umran S. Inan

Publisher: Cambridge University Press

Published: 2011-04-07

Total Pages: 405

ISBN-13: 1139497987

DOWNLOAD EBOOK

Beginning with the development of finite difference equations, and leading to the complete FDTD algorithm, this is a coherent introduction to the FDTD method (the method of choice for modeling Maxwell's equations). It provides students and professional engineers with everything they need to know to begin writing FDTD simulations from scratch and to develop a thorough understanding of the inner workings of commercial FDTD software. Stability, numerical dispersion, sources and boundary conditions are all discussed in detail, as are dispersive and anisotropic materials. A comparative introduction of the finite volume and finite element methods is also provided. All concepts are introduced from first principles, so no prior modeling experience is required, and they are made easier to understand through numerous illustrative examples and the inclusion of both intuitive explanations and mathematical derivations.


Analytical Techniques in Electromagnetics

Analytical Techniques in Electromagnetics

Author: Matthew N. O. Sadiku

Publisher: CRC Press

Published: 2015-10-28

Total Pages: 266

ISBN-13: 1498709028

DOWNLOAD EBOOK

Analytical Techniques in Electromagnetics is designed for researchers, scientists, and engineers seeking analytical solutions to electromagnetic (EM) problems. The techniques presented provide exact solutions that can be used to validate the accuracy of approximate solutions, offer better insight into actual physical processes, and can be utilized


Surface Impedance Boundary Conditions

Surface Impedance Boundary Conditions

Author: Sergey V. Yuferev

Publisher: CRC Press

Published: 2018-09-03

Total Pages: 412

ISBN-13: 1420044907

DOWNLOAD EBOOK

Surface Impedance Boundary Conditions is perhaps the first effort to formalize the concept of SIBC or to extend it to higher orders by providing a comprehensive, consistent, and thorough approach to the subject. The product of nearly 12 years of research on surface impedance, this book takes the mystery out of the largely overlooked SIBC. It provides an understanding that will help practitioners select, use, and develop these efficient modeling tools for their own applications. Use of SIBC has often been viewed as an esoteric issue, and they have been applied in a very limited way, incorporated in computation as an ad hoc means of simplifying the treatment for specific problems. Apply a Surface Impedance "Toolbox" to Develop SIBCs for Any Application The book not only outlines the need for SIBC but also offers a simple, systematic method for constructing SIBC of any order based on a perturbation approach. The formulation of the SIBC within common numerical techniques—such as the boundary integral equations method, the finite element method, and the finite difference method—is discussed in detail and elucidated with specific examples. Since SIBC are often shunned because their implementation usually requires extensive modification of existing software, the authors have mitigated this problem by developing SIBCs, which can be incorporated within existing software without system modification. The authors also present: Conditions of applicability, and errors to be expected from SIBC inclusion Analysis of theoretical arguments and mathematical relationships Well-known numerical techniques and formulations of SIBC A practical set of guidelines for evaluating SIBC feasibility and maximum errors their use will produce A careful mix of theory and practical aspects, this is an excellent tool to help anyone acquire a solid grasp of SIBC and maximize their implementation potential.


Plasmonics: Fundamentals and Applications

Plasmonics: Fundamentals and Applications

Author: Stefan Alexander Maier

Publisher: Springer Science & Business Media

Published: 2007-05-16

Total Pages: 234

ISBN-13: 0387378251

DOWNLOAD EBOOK

Considered a major field of photonics, plasmonics offers the potential to confine and guide light below the diffraction limit and promises a new generation of highly miniaturized photonic devices. This book combines a comprehensive introduction with an extensive overview of the current state of the art. Coverage includes plasmon waveguides, cavities for field-enhancement, nonlinear processes and the emerging field of active plasmonics studying interactions of surface plasmons with active media.


Coplanar Waveguide Circuits, Components, and Systems

Coplanar Waveguide Circuits, Components, and Systems

Author: Rainee N. Simons

Publisher: John Wiley & Sons

Published: 2004-04-07

Total Pages: 461

ISBN-13: 0471463930

DOWNLOAD EBOOK

Up-to-date coverage of the analysis and applications of coplanar waveguides to microwave circuits and antennas The unique feature of coplanar waveguides, as opposed to more conventional waveguides, is their uniplanar construction, in which all of the conductors are aligned on the same side of the substrate. This feature simplifies manufacturing and allows faster and less expensive characterization using on-wafer techniques. Coplanar Waveguide Circuits, Components, and Systems is an engineer's complete resource, collecting all of the available data on the subject. Rainee Simons thoroughly discusses propagation parameters for conventional coplanar waveguides and includes valuable details such as the derivation of the fundamental equations, physical explanations, and numerical examples. Coverage also includes: Discontinuities and circuit elements Transitions to other transmission media Directional couplers, hybrids, and magic T Microelectromechanical systems based switches and phase shifters Tunable devices using ferroelectric materials Photonic bandgap structures Printed circuit antennas


Numerical Techniques in Electromagnetics, Second Edition

Numerical Techniques in Electromagnetics, Second Edition

Author: Matthew N.O. Sadiku

Publisher: CRC Press

Published: 2000-07-12

Total Pages: 764

ISBN-13: 9780849313950

DOWNLOAD EBOOK

As the availability of powerful computer resources has grown over the last three decades, the art of computation of electromagnetic (EM) problems has also grown - exponentially. Despite this dramatic growth, however, the EM community lacked a comprehensive text on the computational techniques used to solve EM problems. The first edition of Numerical Techniques in Electromagnetics filled that gap and became the reference of choice for thousands of engineers, researchers, and students. The Second Edition of this bestselling text reflects the continuing increase in awareness and use of numerical techniques and incorporates advances and refinements made in recent years. Most notable among these are the improvements made to the standard algorithm for the finite difference time domain (FDTD) method and treatment of absorbing boundary conditions in FDTD, finite element, and transmission-line-matrix methods. The author also added a chapter on the method of lines. Numerical Techniques in Electromagnetics continues to teach readers how to pose, numerically analyze, and solve EM problems, give them the ability to expand their problem-solving skills using a variety of methods, and prepare them for research in electromagnetism. Now the Second Edition goes even further toward providing a comprehensive resource that addresses all of the most useful computation methods for EM problems.


Electromagnetic Shielding

Electromagnetic Shielding

Author: Salvatore Celozzi

Publisher: John Wiley & Sons

Published: 2008-05-16

Total Pages: 385

ISBN-13: 0470268476

DOWNLOAD EBOOK

The definitive reference on electromagnetic shielding materials, configurations, approaches, and analyses This reference provides a comprehensive survey of options for the reduction of the electromagnetic field levels in prescribed areas. After an introduction and an overview of available materials, it discusses figures of merit for shielding configurations, the shielding effectiveness of stratified media, numerical methods for shielding analyses, apertures in planar metal screens, enclosures, and cable shielding. Up to date and comprehensive, Electromagnetic Shielding: Explores new and innovative techniques in electromagnetic shielding Presents a critical approach to electromagnetic shielding that highlights the limits of formulations based on plane-wave sources Analyzes aspects not normally considered in electromagnetic shielding, such as the effects of the content of the shielding enclosures Includes references at the end of each chapter to facilitate further study The last three chapters discuss frequency-selective shielding, shielding design procedures, and uncommon ways of shielding—areas ripe for further research. This is an authoritative, hands-on resource for practicing telecommunications and electrical engineers, as well as researchers in industry and academia who are involved in the design and analysis of electromagnetic shielding structures.


Springer Handbook of Systematic Musicology

Springer Handbook of Systematic Musicology

Author: Rolf Bader

Publisher: Springer

Published: 2018-03-21

Total Pages: 1089

ISBN-13: 3662550040

DOWNLOAD EBOOK

This unique reference book offers a holistic description of the multifaceted field of systematic musicology, which is the study of music, its production and perception, and its cultural, historical and philosophical background. The seven sections reflect the main topics in this interdisciplinary subject. The first two parts discuss musical acoustics and signal processing, comprehensively describing the mathematical and physical fundamentals of musical sound generation and propagation. The complex interplay of physiology and psychology involved in sound and music perception is covered in the following sections, with a particular focus on psychoacoustics and the recently evolved research on embodied music cognition. In addition, a huge variety of technical applications for professional training, music composition and consumer electronics are presented. A section on music ethnology completes this comprehensive handbook. Music theory and philosophy of music are imbedded throughout. Carefully edited and written by internationally respected experts, it is an invaluable reference resource for professionals and graduate students alike.


Time Domain Methods in Electrodynamics

Time Domain Methods in Electrodynamics

Author: Peter Russer

Publisher: Springer Science & Business Media

Published: 2008-09-26

Total Pages: 423

ISBN-13: 3540687688

DOWNLOAD EBOOK

This book consists of contributions given in honor of Wolfgang J.R. Hoefer. Space and time discretizing time domain methods for electromagnetic full-wave simulation have emerged as key numerical methods in computational electromagnetics. Time domain methods are versatile and can be applied to the solution of a wide range of electromagnetic field problems. Computing the response of an electromagnetic structure to an impulsive excitation localized in space and time provides a comprehensive characterization of the electromagnetic properties of the structure in a wide frequency range. The most important methods are the Finite Difference Time Domain (FDTD) and the Transmission Line Matrix (TLM) methods. The contributions represent the state of the art in dealing with time domain methods in modern engineering electrodynamics for electromagnetic modeling in general, the Transmission Line Matrix (TLM) method, the application of network concepts to electromagnetic field modeling, circuit and system applications and, finally, with broadband devices, systems and measurement techniques.