Solitons and the Inverse Scattering Transform

Solitons and the Inverse Scattering Transform

Author: Mark J. Ablowitz

Publisher: SIAM

Published: 2006-05-15

Total Pages: 433

ISBN-13: 089871477X

DOWNLOAD EBOOK

A study, by two of the major contributors to the theory, of the inverse scattering transform and its application to problems of nonlinear dispersive waves that arise in fluid dynamics, plasma physics, nonlinear optics, particle physics, crystal lattice theory, nonlinear circuit theory and other areas. A soliton is a localised pulse-like nonlinear wave that possesses remarkable stability properties. Typically, problems that admit soliton solutions are in the form of evolution equations that describe how some variable or set of variables evolve in time from a given state. The equations may take a variety of forms, for example, PDEs, differential difference equations, partial difference equations, and integrodifferential equations, as well as coupled ODEs of finite order. What is surprising is that, although these problems are nonlinear, the general solution that evolves from almost arbitrary initial data may be obtained without approximation.


Solitons

Solitons

Author: R.K. Bullough

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 403

ISBN-13: 3642814484

DOWNLOAD EBOOK

With contributions by numerous experts


Solitons

Solitons

Author: Boling Guo

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2018-03-19

Total Pages: 463

ISBN-13: 3110549417

DOWNLOAD EBOOK

This book provides an up-to-date overview of mathematical theories and research results on solitons, presenting related mathematical methods and applications as well as numerical experiments. Different types of soliton equations are covered along with their dynamical behaviors and applications from physics, making the book an essential reference for researchers and graduate students in applied mathematics and physics. Contents Introduction Inverse scattering transform Asymptotic behavior to initial value problems for some integrable evolution nonlinear equations Interaction of solitons and its asymptotic properties Hirota method Bäcklund transformations and the infinitely many conservation laws Multi-dimensional solitons and their stability Numerical computation methods for some nonlinear evolution equations The geometric theory of solitons Global existence and blow up for the nonlinear evolution equations The soliton movements of elementary particles in nonlinear quantum field The theory of soliton movement of superconductive features The soliton movements in condensed state systemsontents


Nonlinear Waves

Nonlinear Waves

Author: Lokenath Debnath

Publisher: CUP Archive

Published: 1983-12-30

Total Pages: 376

ISBN-13: 9780521254687

DOWNLOAD EBOOK

The outcome of a conference held in East Carolina University in June 1982, this book provides an account of developments in the theory and application of nonlinear waves in both fluids and plasmas. Twenty-two contributors from eight countries here cover all the main fields of research, including nonlinear water waves, K-dV equations, solitions and inverse scattering transforms, stability of solitary waves, resonant wave interactions, nonlinear evolution equations, nonlinear wave phenomena in plasmas, recurrence phenomena in nonlinear wave systems, and the structure and dynamics of envelope solitions in plasmas.