The plans for an international space station, long distance space travel (perhaps to Mars), and the potential for commercial production of ultra pure silicon or polymer crystals are what make these topics of current relevance. The program includes topics such as transport in biological systems (relevant to bone loss associated with long-duration space travel), acoustic levitation, electromagnetic phenomena, crystal growth, protein crystallization, and boiling.
Papers from a March 2004 symposium describe recent work in solidification processes and microstructures in the areas of mushy zone dynamics, rapid solidification, and phase field modeling. Some specific topics include kinetics of dendritic mushy zones, anisotropy effects in lamellar eutectic growth, network modeling of liquid metal transport in solidifying aluminum alloys, and the topology of coarsened microstructures. Other topics include diffuse solid-liquid interfaces and solute trapping, phase selection transitions during undercooled melt solidification, dendritic growth in confined spaces, the influence of foreign particles in the formation of polycrystalline solidification patterns, and a cellular automaton for growth of solutal dendrites. Annotation : 2004 Book News, Inc., Portland, OR (booknews.com).
All metallic materials are prepared from the liquid state as their parent phase. Solidification is therefore one of the most important phase transformation in daily human life. Solidification is the transition from liquid to solid state of matter. The conditions under which material is transformed determines the physical and chemical properties of the as-solidified body. The processes involved, like nucleation and crystal growth, are governed by heat and mass transport. Convection and undercooling provide additional processing parameters to tune the solidification process and to control solid material performance from the very beginning of the production chain. To develop a predictive capability for efficient materials production the processes involved in solidification have to be understood in detail. This book provides a comprehensive overview of the solidification of metallic melts processed and undercooled in a containerless manner by drop tube, electromagnetic and electrostatic levitation, and experiments in reduced gravity. The experiments are accompanied by model calculations on the influence of thermodynamic and hydrodynamic conditions that control selection of nucleation mechanisms and modify crystal growth development throughout the solidification process.
All metallic materials are prepared from the liquid state as their parent phase. Solidification is therefore one of the most important phase transformation in daily human life. Solidification is the transition from liquid to solid state of matter. The conditions under which material is transformed determines the physical and chemical properties of the as-solidified body. The processes involved, like nucleation and crystal growth, are governed by heat and mass transport. Convection and undercooling provide additional processing parameters to tune the solidification process and to control solid material performance from the very beginning of the production chain. To develop a predictive capability for efficient materials production the processes involved in solidification have to be understood in detail. This book provides a comprehensive overview of the solidification of metallic melts processed and undercooled in a containerless manner by drop tube, electromagnetic and electrostatic levitation, and experiments in reduced gravity. The experiments are accompanied by model calculations on the influence of thermodynamic and hydrodynamic conditions that control selection of nucleation mechanisms and modify crystal growth development throughout the solidification process.