This book presents recent material science-based and mechanical analysis-based advances in joining processes. It includes all related processes, e.g. friction stir welding, joining by plastic deformation, laser welding, clinch joining, and adhesive bonding, as well as hybrid joints. It gathers selected full-length papers from the 1st Conference on Advanced Joining Processes.
This report supplies information on joining processes applicable to titanium and its alloys in sheet metal applications, primarily related directly to airframe construction. Although the material presented here does not cover all titanium joining processes, and omits such processes as plasma-arc, submerged-arc, electroslag, flash, and high-frequency resistance welding, the data presented cover materials up to 2-inches thick in some cases and the report should be useful to anyone seeking titanium joining information. The joining processes covered fall into five categories: welding, brazing, metallurgical bonding (diffusion and deformation bonding), adhesive bonding, and mechanical fastening. The fusion welding processes that are discussed in detail include gas tungsten arc, gas metal arc, arc spot, and electron beam. The resistance processes give extended coverage are spot, roll spot, and seam welding. (Author).
Joining Processes for Dissimilar and Advanced Materials describes how to overcome the many challenges involved in the joining of similar and dissimilar materials resulting from factors including different thermal coefficients and melting points. Traditional joining processes are ineffective with many newly developed materials. The ever-increasing industrial demands for production efficiency and high-performance materials are also pushing this technology forward. The resulting emergence of advanced micro- and nanoscale material joining technologies, have provided many solutions to these challenges. Drawing on the latest research, this book describes primary and secondary processes for the joining of advanced materials such as metals and alloys, intermetallics, ceramics, glasses, polymers, superalloys, electronic materials and composites in similar and dissimilar combinations. It also covers details of joint design, quality assurance, economics and service life of the product. - Provides valuable information on innovative joining technologies including induction heating of metals, ultrasonic heating, and laser heating at micro- and nanoscale levels - Describes the newly developed modelling, simulation and digitalization of the joining process - Includes a methodology for characterization of joints
This book presents critical information on the principles and operation of friction welding, friction stir welding, and friction stir processing enhanced with many robust illustrations. It explains the application of these technologies and the current research efforts in the field. The authors explain in detail the advantages offered by these welding processes, in particular their ability to join dissimilar materials not possible to weld in the past. Written for graduate students, researchers, and industrial professionals, the book reinforces concepts presented with case studies on the experimental analysis of welding the dissimilar materials of copper and aluminum, and on friction stir processing.
Superplasticity is the ability of polycrystalline materials under certain conditions to exhibit extreme tensile elongation in a nearly homogeneous/isotropic manner. Historically, this phenomenon was discovered and systematically studied by metallurgists and physicists. They, along with practising engineers, used materials in the superplastic state for materials forming applications. Metallurgists concluded that they had the necessary information on superplasticity and so theoretical studies focussed mostly on understanding the physical and metallurgi cal properties of superplastic materials. Practical applications, in contrast, were led by empirical approaches, rules of thumb and creative design. It has become clear that mathematical models of superplastic deformation as well as analyses for metal working processes that exploit the superplastic state are not adequate. A systematic approach based on the methods of mechanics of solids is likely to prove useful in improving the situation. The present book aims at the following. 1. Outline briefly the techniques of mechanics of solids, particularly as it applies to strain rate sensitive materials. 2. Assess the present level of investigations on the mechanical behaviour of superplastics. 3. Formulate the main issues and challenges in mechanics ofsuperplasticity. 4. Analyse the mathematical models/constitutive equations for superplastic flow from the viewpoint of mechanics. 5. Review the models of superplastic metal working processes. 6. Indicate with examples new results that may be obtained using the methods of mechanics of solids.
The combination of distinct materials is a key issue in modern industry, whereas the driving concept is to design parts with the right material in the right place. In this framework, a great deal of attention is directed towards dissimilar welding and joining technologies. In the automotive sector, for instance, the concept of “tailored blanks”, introduced in the last decade, has further highlighted the necessity to weld dissimilar materials. As far as the aeronautic field is concerned, most structures are built combining very different materials and alloys, in order to match lightweight and structural performance requirements. In this framework, the application of fusion welding techniques, namely, tungsten inert gas or laser welding, is quite challenging due to the difference in physical properties, in particular the melting point, between adjoining materials. On the other hand, solid-state welding methods, such as the friction stir welding as well as linear friction welding processes, have already proved to be capable of manufacturing sound Al-Cu, Al-Ti, Al-SS, and Al-Mg joints, to cite but a few. Recently, promising results have also been obtained using hybrid methods. Considering the novelty of the topic, many relevant issues are still open, and many research groups are continuously publishing valuable results. The aim of this book is to finalize the latest contributions on this topic.
This book contains the papers from the Proceedings of the 1st international joint symposium on joining and welding held at Osaka University, Japan, 6-8 November 2013. The use of frictional heating to process and join materials has been used for many decades. Rotary and linear friction welding are vital techniques for many industrial sectors. More recently the development of friction stir welding (FSW) has significantly extended the application of friction processing. This conference is the first event organized by the three major institutes for joining and welding to focus on the broad range of friction processes. This symposium will provide the latest valuable information from academic and industrial experts from around the world on FSW, FSP, linear and rotary friction welding.
This book covers advances in fusion and solid-state welding processes including basics, welding metallurgy, defect formation, and the effect of process parameters on mechanical properties. Details of the microstructural and mechanical behaviors of weldments are included. This book covers challenges encountered during dissimilar welding of metal by fusion and solid-state welding processes, including remedial solutions and hybrid processes to counter the same. Numerical and statistical simulation approaches used in the welding process for parameter optimization and material flow studies are described as well. Features: Provides details related to the microstructural and mechanical behaviors of welded joints developed by different welding processes. Covers recent research content, metallurgical analysis, and simulation aspects. Discusses the joining of plastics and ceramics. Includes a dedicated chapter on machine learning and digital twin in welding. Explores difficulties associated with the joining of dissimilar metals and alloys. This book is aimed at researchers and graduate students in material joining and characterization and welding.
Due to the wide application of magnesium alloys in metals manufacturing, it is very important to employ a reliable method of joining these reactive metals together and to other alloys. Welding and joining of magnesium alloys provides a detailed review of both established and new techniques for magnesium alloy welding and their characteristics, limitations and applications. Part one covers general issues in magnesium welding and joining, such as welding materials, metallurgy and the joining of magnesium alloys to other metals such as aluminium and steel. The corrosion and protection of magnesium alloy welds are also discussed. In part two particular welding and joining techniques are reviewed, with chapters covering such topics as inert gas welding, metal inert gas welding and laser welding, as well as soldering, mechanical joining and adhesive bonding. The application of newer techniques to magnesium alloys, such as hybrid laser-arc welding, activating flux tungsten inert gas welding and friction stir, is also discussed. With its distinguished editor and expert team of contributors, Welding and joining of magnesium alloys is a comprehensive reference for producers of primary magnesium and those using magnesium alloys in the welding, automotive and other such industries, as well as academic researchers in metallurgy and materials science.