Mechanics of Solids and Fluids

Mechanics of Solids and Fluids

Author: Franz Ziegler

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 750

ISBN-13: 1468405128

DOWNLOAD EBOOK

This book offers a unified presentation of the concepts and most of the practicable principles common to all branches of solid and fluid should be appealing to advanced undergraduate mechanics. Its design students in engineering science and should also enhance the insight of both graduate students and practitioners. A profound knowledge of applied mechanics as understood in this book may help to cultivate the versatility that the engineering community must possess in this modern world of high-technology. This book is, in fact, a reviewed and extensively improved second edition, but it can also be regarded as the first edition in English, translated by the author himself from the original German version, "Technische Mechanik der festen und flOssigen Korper," published by Springer-Verlag, Wien, in 1985. Although this book grew out of lecture notes for a three semester course for advanced undergraduate students taught by the author and several colleagues during the past 20 years, it contains sufficient material for a subsequent two-semester graduate course. The only prerequisites are basic algebra and analysis as usually taught in the first year of an undergraduate engineering curriculum. Advanced mathematics as it is required in the progress of mechanics teaching may be taught in parallel classes, but also an introduction into the art of design should be offered at that stage.


Mechanics of Solids and Fluids

Mechanics of Solids and Fluids

Author: Franz Ziegler

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 866

ISBN-13: 146120805X

DOWNLOAD EBOOK

from reviews of the first edition "This book is a comprehensive treatise... with a significant application to structural mechanics_ the author has provided sufficient applications of the theoretical principles_ such a connection between theory and application is a common theme and quite an attractive feature._ The book is a unique volume which contains information not easily found throughout the related literature." _ APPL. MECH. REV. This text, suitable for courses on fluid and solid mechanics, continuum mechanics, and strength of materials, offers a unified presentation of the theories and practical principles common to all branches of solid and fluid mechanics. For the student, each chapter proceeds from basic material to advanced topics usually covered at the graduate level. The presentation is self -contained, the only prerequisites are the basic algebra and analysis that are usually taught in the first and second years of an undergraduate engineering curriculum. Extensive problem sets, new in this edition, make the text more useful than before. For the practicing engineer, Mechanics of Solids and Fluids provides an up-to-date synopsis of the principles of solid and fluid mechanics combined with illustrative examples. The conservation laws for mass, momentum and energy are considered for both material and control volumes. The discussion of elastostatics includes thermal stress analysis and is extended to linear viscoelasticity by means of the correspondence principle. The Ritz-


Mechanics of Solids and Fluids

Mechanics of Solids and Fluids

Author: Franz Ziegler

Publisher: Springer Science & Business Media

Published: 1995

Total Pages: 882

ISBN-13: 9780387943992

DOWNLOAD EBOOK

Suitable for courses on fluid and solid mechanics, continuum mechanics, and strength of materials, this title offers a presentation of the theories and practical principles common to various branches of solid and fluid mechanics.


Computational Fluid and Solid Mechanics 2003

Computational Fluid and Solid Mechanics 2003

Author: K.J Bathe

Publisher: Elsevier

Published: 2003-06-02

Total Pages: 2485

ISBN-13: 008052947X

DOWNLOAD EBOOK

Bringing together the world's leading researchers and practitioners of computational mechanics, these new volumes meet and build on the eight key challenges for research and development in computational mechanics.Researchers have recently identified eight critical research tasks facing the field of computational mechanics. These tasks have come about because it appears possible to reach a new level of mathematical modelling and numerical solution that will lead to a much deeper understanding of nature and to great improvements in engineering design.The eight tasks are: - The automatic solution of mathematical models - Effective numerical schemes for fluid flows - The development of an effective mesh-free numerical solution method - The development of numerical procedures for multiphysics problems - The development of numerical procedures for multiscale problems - The modelling of uncertainties - The analysis of complete life cycles of systems - Education - teaching sound engineering and scientific judgement Readers of Computational Fluid and Solid Mechanics 2003 will be able to apply the combined experience of many of the world's leading researchers to their own research needs. Those in academic environments will gain a better insight into the needs and constraints of the industries they are involved with; those in industry will gain a competitive advantage by gaining insight into the cutting edge research being carried out by colleagues in academia. Features - Bridges the gap between academic researchers and practitioners in industry - Outlines the eight main challenges facing Research and Design in Computational mechanics and offers new insights into the shifting the research agenda - Provides a vision of how strong, basic and exciting education at university can be harmonized with life-long learning to obtain maximum value from the new powerful tools of analysis


Variational Models and Methods in Solid and Fluid Mechanics

Variational Models and Methods in Solid and Fluid Mechanics

Author: Francesco dell'Isola

Publisher: Springer Science & Business Media

Published: 2012-01-15

Total Pages: 363

ISBN-13: 3709109833

DOWNLOAD EBOOK

F. dell'Isola, L. Placidi: Variational principles are a powerful tool also for formulating field theories. - F. dell'Isola, P. Seppecher, A. Madeo: Beyond Euler-Cauchy Continua. The structure of contact actions in N-th gradient generalized continua: a generalization of the Cauchy tetrahedron argument. - B. Bourdin, G.A. Francfort: Fracture. - S. Gavrilyuk: Multiphase flow modeling via Hamilton's principle. - V. L. Berdichevsky: Introduction to stochastic variational problems. - A. Carcaterra: New concepts in damping generation and control: theoretical formulation and industrial applications. - F. dell'Isola, P. Seppecher, A. Madeo: Fluid shock wave generation at solid-material discontinuity surfaces in porous media. Variational methods give an efficient and elegant way to formulate and solve mathematical problems that are of interest to scientists and engineers. In this book three fundamental aspects of the variational formulation of mechanics will be presented: physical, mathematical and applicative ones. The first aspect concerns the investigation of the nature of real physical problems with the aim of finding the best variational formulation suitable to those problems. The second aspect is the study of the well-posedeness of those mathematical problems which need to be solved in order to draw previsions from the formulated models. And the third aspect is related to the direct application of variational analysis to solve real engineering problems.


Fluid Mechanics

Fluid Mechanics

Author: Pijush K. Kundu

Publisher: Academic Press

Published: 2012

Total Pages: 919

ISBN-13: 0123821002

DOWNLOAD EBOOK

Suitable for both a first or second course in fluid mechanics at the graduate or advanced undergraduate level, this book presents the study of how fluids behave and interact under various forces and in various applied situations - whether in the liquid or gaseous state or both.


Fluid-Solid Interaction Dynamics

Fluid-Solid Interaction Dynamics

Author: Jing Tang Xing

Publisher: Academic Press

Published: 2019-08-30

Total Pages: 682

ISBN-13: 0128193530

DOWNLOAD EBOOK

Fluid-Solid Interaction Dynamics: Theory, Variational Principles, Numerical Methods and Applications gives a comprehensive accounting of fluid-solid interaction dynamics, including theory, numerical methods and their solutions for various FSI problems in engineering. The title provides the fundamental theories, methodologies and results developed in the application of FSI dynamics. Four numerical approaches that can be used with almost all integrated FSI systems in engineering are presented. Methods are linked with examples to illustrate results. In addition, numerical results are compared with available experiments or numerical data in order to demonstrate the accuracy of the approaches and their value to engineering applications. The title gives readers the state-of-the-art in theory, variational principles, numerical modeling and applications for fluid-solid interaction dynamics. Readers will be able to independently formulate models to solve their engineering FSI problems using information from this book. - Presents the state-of-the-art in fluid-solid interaction dynamics, providing theory, method and results - Takes an integrated approach to formulate, model and simulate FSI problems in engineering - Illustrates results with concrete examples - Gives four numerical approaches and related theories that are suitable for almost all integrated FSI systems - Provides the necessary information for bench scientists to independently formulate, model, and solve physical FSI problems in engineering


Characteristics Finite Element Methods in Computational Fluid Dynamics

Characteristics Finite Element Methods in Computational Fluid Dynamics

Author: Joe Iannelli

Publisher: Springer Science & Business Media

Published: 2006-09-24

Total Pages: 744

ISBN-13: 3540453431

DOWNLOAD EBOOK

This book details a systematic characteristics-based finite element procedure to investigate incompressible, free-surface and compressible flows. Several sections derive the Fluid Dynamics equations from first thermo-mechanics principles and develop this multi-dimensional and infinite-directional upstream procedure by combining a finite element discretization with an implicit non-linearly stable Runge-Kutta time integration for the numerical solution of the Euler and Navier Stokes equations.


Fluid And Solid Mechanics

Fluid And Solid Mechanics

Author: Frank Smith

Publisher: World Scientific

Published: 2016-03-22

Total Pages: 226

ISBN-13: 1786340283

DOWNLOAD EBOOK

This book leads readers from a basic foundation to an advanced-level understanding of fluid and solid mechanics. Perfect for graduate or PhD mathematical-science students looking for help in understanding the fundamentals of the topic, it also explores more specific areas such as multi-deck theory, time-mean turbulent shear flows, non-linear free surface flows, and internal fluid dynamics.Fluid and Solid Mechanics is the second volume of the LTCC Advanced Mathematics Series. This series is the first to provide advanced introductions to mathematical science topics to advanced students of mathematics. Edited by the three joint heads of the London Taught Course Centre for PhD Students in the Mathematical Sciences (LTCC), each book supports readers in broadening their mathematical knowledge outside of their immediate research disciplines while also covering specialized key areas.