From Pulitzer Prize finalist Linda Hogan, Solar Storms tells the moving, “luminous” (Publishers Weekly) story of Angela Jenson, a troubled Native American girl coming of age in the foster system in Oklahoma, who decides to reunite with her family. At seventeen, Angela returns to the place where she was raised—a stunning island town that lies at the border of Canada and Minnesota—where she finds that an eager developer is planning a hydroelectric dam that will leave sacred land flooded and abandoned. Joining up with three other concerned residents, Angela fights the project, reconnecting with her ancestral roots as she does so. Harrowing, lyrical, and boldly incisive, Solar Storms is a powerful examination of the clashes between cultures and traumatic repercussions that have shaped American history.
Extreme Solar Particle Storms: The hostile Sun provides a consolidated review of our current understanding of extreme solar events, or black swans, that leave our technological society vulnerable. Written by experts at the forefront of the growing field of solar storms, this book will be of interest to students and researchers, as well as those curious about the threat that our Sun poses to the modern world.
Sudden Ionospheric Disturbances resulting from an interaction of the Solar Flare radiation with the constituents of the upper atmosphere constitute one of the three major aspects of ground level monitoring of solar flares -the other two being optical observations of flares, and the observations of solar bursts in radio wavelengths. SIDs, therefore, form a major part of flare monitoring programme in many observatories. Unlike the other two, however, the ionospheric effects of flares provide one major additional source of interest - the reaction of the ionospheric plasma to an impulsive ionization. The high atmosphere provides a low pressure laboratory without walls in which a host of reactions occur between electrons, ions and neutral particles. The resulting products and their distributions may bear no resemblance to those of the primary neutral constituents or their direct ionization products. The variations with the time of the day, with season and with solar activity that form the bulk of the ionospheric measurements are too slow to allow any insight into the nature of these ionospheric reactions whose lifetimes are often very short. The relaxation time of the ionospheric ionization is only a few minutes or fraction of a minute in the lower ionosphere and in the E-region and is about 30 min to an hour at 300 km. The flares provide a sudden short impulse comparable to these time scales.
This is a companion guide to Odenwald's previous book, The 23rd Cycle: Learning to live with a stormy star. It is a fast-paced chronicle of over 2000 years of solar storms that have caused not only panic and fear, but have impacted virtually every technology that has been developed during the last 200 years including telegraphs, telephones, radio communications, satellite operations, the electrical power grid and human operations in space. Culled from thousands of newspaper headlines and stories since the early-1800s, this book gives a personal, human insight to the most dramatic 150 'space weather' events of the last few millennia. The Great 1859 Superstorm is recounted from a variety of diary entries and numerous newspaper stories from around the world.
This unique , authoritative book introduces and accurately depicts the current state-of-the art in the field of space storms. Professor Koskinen, renowned expert in the field, takes the basic understanding of the system, together with the pyhsics of space plasmas, and produces a treatment of space storms. He combines a solid base describing space physics phenomena with a rigourous theoretical basis. The topics range from the storms in the solar atmosphere through the solar wind, magnetosphere and ionosphere to the production of the storm-related geoelectric field on the ground. The most up-to-date information available ist presented in a clear, analytical and quantitative way. The book is divided into three parts. Part 1 is a phenomenological introduction to space weather from the Sun to the Earth. Part 2 comprehensively presents the fundamental concepts of space plasma physics. It consists of discussions of fundamental concepts of plasma physics, starting from underlying electrodynamics and statistical physics of charged particles and continuing to single particle motion in homogeneous electromagnetic fields, waves in cold plasma approximation, Vlasov theory, magnetohydrodynamics, instabilities in space plasmas, reconnection and dynamo. Part 3 bridges the gap between the fundamental plasma physics and research level physics of space storms. This part discusses radiation and scattering processes, transport and diffiusion, shocks and shock acceleration, storms on the Sun, in the magnetosphere, the coupling to the atmosphere and ground. The book is concluded wtih a brief review of what is known of space stroms on other planets. One tool for building this briege ist extensive cross-referencing between the various chapters. Exercise problems of varying difficulty are embedded within the main body of the text.
There is a force out there that could destroy our world in minutes. . . . Solar flares—brief bursts of radiation from our sun—have always existed and have never been particularly dangerous. Nature hasn’t changed. But we have. By making our world so dependent on electricity delivered by huge, unprotected power grids we have inadvertently placed humanity at terrible risk. As bestselling author Whitley Strieber explores in this urgent new work, a powerful solar flare could demolish our electrical delivery system, wiping away centuries of civilization in minutes and drastically changing our world. Such a scenario is altogether plausible—and it is the single most dangerous single thing that could happen to our civilization, more dangerous than the most massive earthquake or volcano, more dangerous than climate change, more dangerous even than nuclear war. What is worse, solar flares of a now-dangerous intensity are not all that uncommon; and not only that, our electrical and electronic infrastructure is becoming so extensive, and thus so fragile, that smaller and smaller solar flares can pose more and more serious hazards. Due to the astonishing unwillingness of power companies to cooperate, good programs that would make us safer, and that are supported by both political parties, have been routinely prevented from being enacted. In Solar Flares: What You Need to Know, Strieber reveals the dangers behind solar flares, tracks the disastrous damage they could cause, surveys what they would do to our world in the here-and-now, and explains what nations and individuals must do to prepare for them.
Published by the American Geophysical Union as part of the Special Publications Series. From the Sun demystifies auroras, magnetic storms, solar flares, cosmic rays and other displays of Sun-Earth interactions. The authors, all well-known figures in space science, explain how solar eruptions affect human technology and society in articles intended for the nonspecialist and adapted from Eos, Transactions, American Geophysical Union. One of the most appealing features is a comprehensive glossary of the terminology necessary to read almost any volume on Sun-Earth connections.
A book to help you to prepare for two end-of-the-world-as-we-know-it events: the EMP attack and the solar storm. Practical preparations are outlined, including steps to meet basic needs in the absence of modern utilities, and the use of Faraday cages and uninterruptible power supplies to protect personal electronics.