From Space to Earth tracks the evolution of the technology of photovoltaics, the use of solar cells to convert the sun's energy into electricity. John Perlin's painstaking research results in a fascinating account of the development of this technology, from its shaky nineteenth-century beginnings mired in scientific controversy to its high-visibility success in the space program, to its current position as a versatile and promising power source.
This book makes the case for Space Solar Power; recounting the history of this fascinating concept and summarizing the many different ways in which it might be accomplished. The book describes in detail a highly promising concept - SPS-ALPHA (Solar Power Satellite by means of Arbitrarily Large Phased Array) - and presents a business case comprising applications in space and markets on Earth. The book explains how it is possible to begin now with technologies that are already at hand, while developing the more advanced technologies that will be needed to deliver power economically to markets on Earth. The Case for Space Solar Power concludes by laying out a path forward that is both achievable and affordable: within a dozen years or less, the first multi-megawatt pilot plant could be in operation. Getting started could cost less than $10 million over the first 2 years, less than $100 million over the next half dozen years. Given that space solar power would transform our future in space, and might provide a new source of virtually limitless and sustainable energy to markets across the world, the book poses the question, "Why wouldn't we pursue space solar power?"
Solar Energy Forecasting and Resource Assessment is a vital text for solar energy professionals, addressing a critical gap in the core literature of the field. As major barriers to solar energy implementation, such as materials cost and low conversion efficiency, continue to fall, issues of intermittency and reliability have come to the fore. Scrutiny from solar project developers and their financiers on the accuracy of long-term resource projections and grid operators' concerns about variable short-term power generation have made the field of solar forecasting and resource assessment pivotally important. This volume provides an authoritative voice on the topic, incorporating contributions from an internationally recognized group of top authors from both industry and academia, focused on providing information from underlying scientific fundamentals to practical applications and emphasizing the latest technological developments driving this discipline forward. - The only reference dedicated to forecasting and assessing solar resources enables a complete understanding of the state of the art from the world's most renowned experts. - Demonstrates how to derive reliable data on solar resource availability and variability at specific locations to support accurate prediction of solar plant performance and attendant financial analysis. - Provides cutting-edge information on recent advances in solar forecasting through monitoring, satellite and ground remote sensing, and numerical weather prediction.
Here is the truth that the powerful Dirty Energy public relations machine doesn't want you to know: the ascent of solar energy is upon us. Solar-generated electricity has risen exponentially in the last few years and employment in the solar industry has doubled since 2009. Meanwhile, electricity from coal has declined to pre-World War II levels as the fossil fuel industry continues to shed jobs. Danny Kennedy systematically refutes the lies spread by solar's opponents—that it is expensive, inefficient, and unreliable; that it is kept alive only by subsidies; that it can't be scaled; and many other untruths. He shows that we need a rooftop revolution to break the entrenched power of the coal, oil, nuclear, and gas industries Solar energy can create more jobs, return our nation to prosperity, and ensure the sustainability and safety of our planet. Now is the time to move away from the dangerous energy sources of the past and unleash the amazing potential of the sun.
In the past decade, the field of small satellites has expanded the space industry in a powerful way. Hundreds, indeed thousands, of these innovative and highly cost-efficient satellites are now being launched from Earth to establish low-cost space systems. These smallsats are engaged in experiments and prototype testing, communications services, data relay, internet access, remote sensing, defense and security related services, and more. Some of these systems are quite small and are simple student experiments, while others in commercial constellations are employing state-of-the-art technologies to deliver fast and accurate services. This handbook provides a comprehensive overview of this exciting new field. It covers the technology, applications and services, design and manufacture, launch arrangements, ground systems, and economic and regulatory arrangements surrounding small satellites. The diversity of approach in recent years has allowed for rapid innovation and economic breakthroughs to proceed at a pace that seems only to be speeding up. In this reference work, readers will find information pertaining to all aspects of the small satellite industry, written by a host of international experts in the field.
With a focus on China, the United States, and India, this book examines the economic ambitions of the second space race. The authors argue that space ambitions are informed by a combination of factors, including available resources, capability, elite preferences, and talent pool. The authors demonstrate how these influences affect the development of national space programs as well as policy and law.
Communication satellites are a $144 billion industry. Is there any space-based industry that could possibly beat that market? 'Solar Power Satellites' shows why and how the space satellite industry will soon begin expanding its market from relaying signals to Earth to generating energy in space and delivering it to the ground as electricity. In all industrialized nations, energy demand is growing exponentially. In the developing world, the need for energy is as basic as food and water. The Sun's energy is available everywhere, and it is non-polluting. As business plans demonstrate its technical feasibility, commercial potential, and environmental acceptability, every country on Earth will look to space for the power it needs.
A major update of solar cell technology and the solar marketplace Since the first publication of this important volume over a decade ago, dramatic changes have taken place with the solar market growing almost 100-fold and the U.S. moving from first to fourth place in the world market as analyzed in this Second Edition. Three bold new opportunities are identified for any countries wanting to improve market position. The first is combining pin solar cells with 3X concentration to achieve economic competitiveness near term. The second is charging battery-powered cars with solar cell–generated electricity from arrays in surrounding areas—including the car owners' homes—while simultaneously reducing their home electricity bills by over ninety percent. The third is formation of economic "unions" of sufficient combined economic size to be major competitors. In this updated edition, feed-in tariffs are identified as the most effective approach for public policy. Reasons are provided to explain why pin solar cells outperform more traditional pn solar cells. Field test data are reported for nineteen percent pin solar cells and for ~500X concentrating systems with bare cell efficiencies approaching forty percent. Paths to bare cell efficiencies over fifty percent are described, and key missing program elements are identified. Since government support is needed for new technology prototype integration and qualification testing before manufacturing scale up, the key economic measure is identified in this volume as the electricity cost in cents per kilowatt-hour at the complete installed system level, rather than just the up-front solar cell modules' costs in dollars per watt. This Second Edition will benefit technologists in the fields of solar cells and systems; solar cell researchers; power systems designers; academics studying microelectronics, semiconductors, and solar cells; business students and investors with a technical focus; and government and political officials developing public policy.