Solar Cooling Technologies presents a detailed study of the potential technologies for coupling solar energy and cooling systems. Unifies all the various power based solar techniques into one book, investigates tri-generation schemes for maximization of cooling efficiency, especially for small scale applications and offers direct comparison of all possible technologies of solar cooling Includes detailed numerical investigations for potential cooling applications
Advances in Solar Heating and Cooling presents new information on the growing concerns about climate change, the security of energy supplies, and the ongoing interest in replacing fossil fuels with renewable energy sources. The amount of energy used for heating and cooling is very significant, estimated, for example, as half of final energy consumption in Europe. Solar thermal installations have the potential to meet a large proportion of the heating and cooling needs of both buildings and industry and the number of solar thermal installations is increasing rapidly. This book provides an authoritative review of the latest research in solar heating and cooling technologies and applications. - Provides researchers in academia and industry with an authoritative overview of heating and cooling for buildings and industry in one convenient volume - Part III, 'Solar cooling technologies' is contributed by authors from Shanghai Jiao Tong University, which is a world-leader in this area - Covers advanced applications from zero-energy buildings, through industrial process heat to district heating and cooling
Cooling buildings is a major global energy consumer and the energy requirement is growing year by year. This guide to solar cooling technology explains all you need to know about how solar energy can be converted into cooling energy. It outlines the difference between heat-driven and photovoltaic-driven systems and gives examples of both, making clear in what situations solar cooling technology makes sense. It includes chapters on: • solar thermal collectors • solar cooling technologies • cold distribution • storage components • designing and sizing • installation, operation and maintenance • economic feasibility • potential markets • case studies. Solar Cooling is for engineers, architects, consultancies, solar thermal technology companies, students and anyone who is interested in getting involved with this technology.
Solar Heating and Cooling Systems: Fundamentals, Experiments and Applications provides comprehensive coverage of this modern energy issue from both a scientific and technical level that is based on original research and the synthesis of consistent bibliographic material that meets the increasing need for modernization and greater energy efficiency to significantly reduce CO2 emissions. Ioan Sarbu and Calin Sebarchievici present a comprehensive overview of all major solar energy technologies, along with the fundamentals, experiments, and applications of solar heating and cooling systems. Technical, economic, and energy saving aspects related to design, modeling, and operation of these systems are also explored. This reference includes physical and mathematical concepts developed to make this publication a self-contained and up-to-date source of information for engineers, researchers, and professionals who are interested in the use of solar energy as an alternative energy source. - Includes learning aims, chapter summaries, problems and solutions to support the theories presented - Puts a specific emphasis on the practical application of the technologies in heating and cooling systems - Contains calculating equations for the energy and economic index of solar systems
Renewable Heating and Cooling: Technologies and Applications presents the latest information on the generation of heat for industry and domestic purposes, an area where a significant proportion of total energy is consumed. In Europe, this figure is estimated to be almost 50%, with the majority of heat generated by the consumption of fossil fuels. As there is a pressing need to increase the uptake of renewable heating and cooling (RHC) to reduce greenhouse gas emissions, this book provides a comprehensive and authoritative overview on the topic. Part One introduces key RHC technologies and discusses RHC in the context of global heating and cooling demand, featuring chapters on solar thermal process heat generation, deep geothermal energy, and solar cooling technologies. Part Two explores enabling technologies, special applications, and case studies with detailed coverage of thermal energy storage, hybrid systems, and renewable heating for RHC, along with case studies in China and Sweden. Users will find this book to be an essential resource for lead engineers and engineering consultants working on renewable heating and cooling in engineering companies, as well as academics and R&D professionals in private research institutes who have a particular interest in the subject matter. - Includes coverage on biomass, solar thermal, and geothermal renewable heating and cooling technologies - Features chapters on solar thermal process heat generation, deep geothermal energy, solar cooling technologies, and special applications - Presents case studies with detailed coverage of thermal energy storage, hybrid systems, and renewable heating for RHC - Explores enabling technologies and special applications
A complete overview of solar technologies relevant to the built environment, including solar thermal energy for heating and cooling, passive solar energy for daylighting and heating supply, and photovoltaics for electricity production Provides practical examples and calculations to enable component and system simulation e.g. Calculation of U-values, I-V curve parameters and radiance distribution modelling Discusses the new trends in thermal energy use, including the architectural integration of collector systems, integrated ventilation photovoltaics facades and solar powered absorption cooling systems Coverage of cutting-edge applications such as active and passive cooling techniques and results from ongoing research projects
This book, based on the research experience and outcomes of a group of international contributors, addresses a range of advanced energy efficiency technologies and their applications in solar heating, cooling and power generation, while also providing solutions for tackling recurring low efficiency problems in today's systems. It highlights the latest technologies and methods, which can significantly improve the performance of solar systems, enabling readers to design, construct and apply high-performance solar systems in or for their own projects. The contributors provide a systematic introduction to state-of-the-art energy efficiency technologies that demonstrates how to implement innovative solar systems. These technologies include: " heat pipes and loop heat pipes; " phase change materials (PCMs) and PCM slurries; " micro-channel panels; " desiccant/adsorption cycling; " ejector cooling and heat pumps; and " solar concentration and thermoelectric units. The book shows how innovative solar systems applicable to rural and urban buildings can be analysed and demonstrates the successful implementation of these advanced technologies. It delivers the design principles and associated energy performance assessment methods for a range of selected solar heating, cooling and power generation projects. This book offers a valuable source of information for final-year undergraduate students, as well as graduate students and academic lecturers, as it promotes the widespread deployment of advanced solar heating, cooling and power generation technologies applicable for buildings across the globe. The book is also a good point of reference for design engineers and energy consultants who wish to extend their knowledge of advanced technologies used to achieve energy efficiency.
Passive Cooling addresses all of the existing creative energyless means of keeping buildings cool. Unlike passive heating, which draws on the sun, passive cooling relies on three natural heat sinks - the sky, the atmosphere, and the earth to achieve temperature moderation. This book describes and evaluates mechanisms for coupling buildings to these sinks and ways of integrating multiple strategies into effective passive cooling systems.In "Radiative Cooling," Marlo Martin explains how the sky specifically outer space - acts as the ultimate absorber to balance energy inputs from the sun as well as other sources. "Ventilative Cooling" by Subrato Chandra and "Evaporative Cooling" by John Yellott describe two ways in which the atmosphere can serve as a medium of heat transfer. The third natural heat sink the earth, is evaluated by Kenneth Labs in "Earth Coupling." Gene Clark in "Passive Cooling Systems" explains how each of these cooling resources affects the design of a building in a dramatically different way and shows how they can be combined. And Jeffrey Cook reviews the current state of basic and applied research projects and anticipates promising future directions of study and application.Because passive cooling techniques have a rich and diverse history of worldwide development and application, the editor has taken special care to relate developments in the United States to international practice and research, providing a broad base for professional redirection in building design.Jeffrey Cook is Regents Professor of Architecture at Arizona State University. Passive Cooling is volume 8 in the series Solar Heat Technologies: Fundamentals and Applications, edited by Charles A Bankston.
The proceedings entitled “Concentrated Solar Thermal Technologies: Recent Trends and Applications” includes the peer-reviewed selected papers those are presented during NCSTET 2016. The sub-topics under concentrated solar thermal technologies and applications included in the book are Solar Field; Receiver and Heat Exchanger; Coating; Thermal Energy Storage; Cooling; Process Heat; and Smart Grid and Policy Research. The domains mentioned cover topics from resource-assessment, collection to conversion of solar energy for applications, like, heating, cooling and electricity. The proceedings also include invited lectures from domain experts. The edited work will be useful for beginners and for the advanced level researchers in the field of concentrated solar thermal technologies and their applications.