Soil-tool-residue Interactions

Soil-tool-residue Interactions

Author: Zhiwei Zeng

Publisher:

Published: 2019

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

Soil-tool-residue interactions are at the centre of many agricultural field operations. The study of soil-tool-residue interactions is one of the fundamental aspects of soil dynamics in agricultural engineering. The aim of this study was to investigate dynamic behaviours of soil-tool-residue interactions including soil cutting forces, soil displacement, soil loosening and furrow profile, straw displacement, residue cover and incorporation. Experimental studies of soil-tool-residue interactions were conducted for various soil-engaging tools (fluted coulter, rippled disc, and compact disc harrow) working on several field conditions (corn stubble, wheat stubble, and bare soil) at different operational parameters (working speed and depth). Numerical models of the soil-tool-residue interactions were developed for a micropenetrometer, a subsoiler, and a sweep using the discrete element method (DEM). The models were calibrated and validated by comparing simulation results with experimental data from soil bin and field tests. Field testing results of vertical tillage tools demonstrated that fluted coulters left less surface residue, incorporated more residue into the soil, created a wider furrow, and disturbed a larger area than rippled discs. The effect of working speed was more dominant than the coulter geometry on the tillage performance of the fluted coulters. Soil bin tests of a compact disc harrow indicated that disc spacing and offset had significant effects on soil disturbance characteristics, and the effects varied with the tillage depth. The DEM simulation results showed that the soil-micropenetrometer model produced comparable results to the laboratory measurements, in terms of the variation of cone index over penetration depth. The soil-subsoiler model was capable of predicting soil cutting resistance and soil disturbance characteristics with relative errors ranging from 2.63 to 10.2%. The straw-sweep-soil model was able to simulate dynamic attributes of bulk materials and individual particles, such as straw movement, moving trajectories and velocity contours. This study embraced a broad topic of soil-tool-residue interactions. The results have advanced the science of soil dynamics and contributed to the engineering knowledge required for the development of high-performance agricultural machinery that consumes minimal tractor power and creates optimal field conditions for crop growth.


Soil-Machine Interactions

Soil-Machine Interactions

Author: Shen

Publisher: Routledge

Published: 2017-11-13

Total Pages: 360

ISBN-13: 1351415662

DOWNLOAD EBOOK

Aiming to improve work efficiency in such areas as tillage in agriculture, earth-moving in civil engineering, and tunnel-making in sea-bed operations, this work offers an introduction to Finite Element Method (FEM) analysis of soil-machine systems. It explains the advantage of FEM's numerical approach over traditional analytical and empirical methods of dealing with complex factors from nonlinear mechanical behaviour to geometric configurations.


No-till Farming Systems for Sustainable Agriculture

No-till Farming Systems for Sustainable Agriculture

Author: Yash P. Dang

Publisher: Springer Nature

Published: 2020-09-03

Total Pages: 638

ISBN-13: 3030464091

DOWNLOAD EBOOK

This book is a comprehensive summary of current global research on no-till farming, and its benefits and challenges from various agronomic, environmental, social and economic perspectives. It details the characteristics and future requirements of no-till farming systems across different geographic and climatic regions, and outlines what is needed to increase the uptake of no-till farming globally. Over 35 chapters, this book covers in detail the agronomic and soil management issues that must be resolved to ensure the successful implementation of these systems. Important economic, environmental, social and policy considerations are discussed. It also features a series of case studies across a number of regions globally, highlighting the challenges and opportunities for no-till and how these may vary depending on climate and geopolitical location. This book is a remarkable compilation by experts in no-till farming systems. The promotion and expansion of no-till farming systems worldwide will be critical for food security, and resource and environmental sustainability. This is an invaluable reference for both researchers and practitioners grappling with the challenges of feeding the world’s rising population in an environment increasingly impacted by climate change. It is an essential reading for those seeking to understand the complexity of no-till farming systems and how best to optimise these systems in their region.


Frontiers in Plant–Soil Interaction

Frontiers in Plant–Soil Interaction

Author: Tariq Aftab

Publisher: Academic Press

Published: 2021-05-01

Total Pages: 662

ISBN-13: 0323909442

DOWNLOAD EBOOK

Plants face a wide range of environmental challenges, which are expected to become more intense as a result of global climate change. Plant–soil interactions play an important role in the functioning of ecosystems. Soil properties represent a strong selection pressure for plant diversity and influence the structure of plant communities and biodiversity. The complexity of plant–soil interactions has recently been studied by developing a trait-based approach in which responses and effects of plants on soil environment are quantified and modelled. This fundamental research on plant–soil interaction in ecosystems is essential to transpose knowledge of functional ecology to environmental management.Frontiers in Plant-Soil Interaction: Molecular Insights into Plant Adaptation will address topics that provide advances in understanding plant responses to soil conditions through the integration of genetic, molecular, and plant-level studies of diverse biotic and abiotic stresses under field and laboratory conditions. This book will be beneficial to students and researchers working on stress physiology and stress proteins, genomics, proteomics, genetic engineering and other fields of plant-soil interactions. Frontiers in Plant-Soil Interaction will also help scientists explore new horizons in their area of research. - Brings together global leaders working in the area of plant–environment interactions and shares their research findings - Presents current and future scenarios for the management of stressors - Illustrates the central role for plant-soil interactions in applying basic research to address current and future challenges to humans


Interactions in Soil: Promoting Plant Growth

Interactions in Soil: Promoting Plant Growth

Author: John Dighton

Publisher: Springer

Published: 2014-05-19

Total Pages: 240

ISBN-13: 9401788901

DOWNLOAD EBOOK

This book investigates soil ecology and biodiversity for its ability to maintain a balance of beneficial organisms to support plant growth. This subject is discussed by a group of international authors in natural, agricultural and urban systems. The importance of biodiversity per se and, specifically, the feedbacks between the plant and soil biota in mediating soil function are emphasized. Examples are selected from allelopathy and invasive plant species along with the, hitherto overlooked, role of viruses in soil. The book is intended to provide a framework for a holistic understanding of the essential role of soil organisms in promoting plant growth.


Residue Reviews

Residue Reviews

Author: Francis A. Gunther

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 164

ISBN-13: 146158504X

DOWNLOAD EBOOK

Worldwide concern in scientific, industrial, and governmental com munities over traces of toxic chemicals in foodstuffs and in both abiotic and biotic environments has justified the present triumvirate of specialized publications in this field: comprehensive reviews, rapidly published progress reports, and archival documentations. These three publications are integrated and scheduled to provide in international communication the coherency essential for nonduplicative and current progress in a field as dynamic and complex as environmental contami nation and toxicology. Until now there has been no journal or other publication series reserved exclUSively for the diversified literature on "toxic" chemicals in our foods, our feeds, our geographical surround ings, our domestic animals, our wildlife, and ourselves. Around the world immense efforts and many talents have been mobilized to tech nical and other evaluations of natures, locales, magnitudes, fates, and toxicology of the persisting residues of these chemicals loosed upon the world. Among the sequelae of this broad new emphasis has been an inescapable need for an articulated set of authoritative publications where one could expect to find the latest important world literature produced by this emerging area of science together with documenta tion of pertinent ancillary legislation.