Soil Physics with Python

Soil Physics with Python

Author: Marco Bittelli

Publisher:

Published: 2015

Total Pages: 461

ISBN-13: 0199683093

DOWNLOAD EBOOK

This innovative study presents concepts and problems in soil physics, and provides solutions using original computer programs. It provides a close examination of physical environments of soil, including an analysis of the movement of heat, water and gases. The authors employ the programminglanguage Python, which is now widely used for numerical problem solving in the sciences. In contrast to the majority of the literature on soil physics, this text focuses on solving, not deriving, differential equations for transport. Using numerical procedures to solve differential equations allowsthe solution of quite difficult problems with fairly simple mathematical tools. Numerical methods convert differential into algebraic equations, which can be solved using conventional methods of linear algebra. Each chapter introduces a soil physics concept, and proceeds to develop computer programsto solve the equations and illustrate the points made in the discussion.Problems at the end of each chapter help the reader practise using the concepts introduced. The text is suitable for advanced undergraduates, graduates and researchers of soil physics. It employs an open source philosophy where computer code is presented, explained and discussed, and provides thereader with a full understanding of the solutions. Once mastered, the code can be adapted and expanded for the user's own models, fostering further developments. The Python tools provide a simple syntax, Object Oriented Programming techniques, powerful mathematical and numerical tools, and a userfriendly environment.


Soil Physics with Python

Soil Physics with Python

Author: Marco Bittelli

Publisher: OUP Oxford

Published: 2015-05-14

Total Pages: 461

ISBN-13: 0191505595

DOWNLOAD EBOOK

This innovative study presents concepts and problems in soil physics, and provides solutions using original computer programs. It provides a close examination of physical environments of soil, including an analysis of the movement of heat, water and gases. The authors employ the programming language Python, which is now widely used for numerical problem solving in the sciences. In contrast to the majority of the literature on soil physics, this text focuses on solving, not deriving, differential equations for transport. Using numerical procedures to solve differential equations allows the solution of quite difficult problems with fairly simple mathematical tools. Numerical methods convert differential into algebraic equations, which can be solved using conventional methods of linear algebra. Each chapter introduces a soil physics concept, and proceeds to develop computer programs to solve the equations and illustrate the points made in the discussion. Problems at the end of each chapter help the reader practise using the concepts introduced. The text is suitable for advanced undergraduates, graduates and researchers of soil physics. It employs an open source philosophy where computer code is presented, explained and discussed, and provides the reader with a full understanding of the solutions. Once mastered, the code can be adapted and expanded for the user's own models, fostering further developments. The Python tools provide a simple syntax, Object Oriented Programming techniques, powerful mathematical and numerical tools, and a user friendly environment.


Soil Water Dynamics

Soil Water Dynamics

Author: Arthur W. Warrick

Publisher: Oxford University Press

Published: 2003-02-13

Total Pages: 420

ISBN-13: 9780195344110

DOWNLOAD EBOOK

This book presents a rigorous mathematical development of soil water and contaminant flow in variably saturated and saturated soils. Analytical and numerical methods are balanced: computer programs, among them MathCad and Fortran, are presented, and more than 150 practice and discussion questions are included. Students are thus exposed not only to theory but also to an array of solutions techniques. Those using the book as a reference will appreciate the careful development of basic flow equations, the inclusion of solutions and methodology currently available only in journals and proceedings volumes, and the examples and calculations directly applicable to their own work.


An Introduction to Environmental Biophysics

An Introduction to Environmental Biophysics

Author: Gaylon S. Campbell

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 296

ISBN-13: 1461216265

DOWNLOAD EBOOK

From reviews of the first edition: "well organized . . . Recommended as an introductory text for undergraduates" -- AAAS Science Books and Films "well written and illustrated" -- Bulletin of the American Meteorological Society


Soil Organic Carbon Mapping Cookbook

Soil Organic Carbon Mapping Cookbook

Author: Food and Agriculture Organization of the United Nations

Publisher: Food & Agriculture Org.

Published: 2018-05-21

Total Pages: 222

ISBN-13: 9251304408

DOWNLOAD EBOOK

The Soil Organic Carbon Mapping cookbook provides a step-by-step guidance for developing 1 km grids for soil carbon stocks. It includes the preparation of local soil data, the compilation and pre-processing of ancillary spatial data sets, upscaling methodologies, and uncertainty assessments. Guidance is mainly specific to soil carbon data, but also contains many generic sections on soil grid development, as it is relevant for other soil properties. This second edition of the cookbook provides generic methodologies and technical steps to produce SOC maps and has been updated with knowledge and practical experiences gained during the implementation process of GSOCmap V1.0 throughout 2017. Guidance is mainly specific to SOC data, but as this cookbook contains generic sections on soil grid development it can be applicable to map various soil properties.


Earth Matters

Earth Matters

Author: Richard D. Bardgett

Publisher: Oxford University Press

Published: 2016

Total Pages: 216

ISBN-13: 0199668566

DOWNLOAD EBOOK

For much of history, soil has played a major, and often central, role in the lives of humans. Entire societies have risen, and collapsed, through the management or mismanagement of soil; farmers and gardeners worldwide nurture their soil to provide their plants with water, nutrients, and protection from pests and diseases; major battles have been aborted or stalled by the condition of soil; murder trials have been solved with evidence from the soil; and, for most of us, our ultimate fate is the soil. In this book Richard Bardgett discusses soil and the many, and sometimes surprising, ways that humanity has depended on it throughout history, and still does today. Analysing the role soil plays in our own lives, despite increasing urbanization, and in the biogeochemical cycles that allow the planet to function effectively, Bardgett considers how superior soil management could combat global issues such as climate change, food shortages, and the extinction of species. Looking to the future, Bardgett argues that it is vital for the future of humanity for governments worldwide to halt soil degradation, and to put in place policies for the future sustainable management of soils.


Chemistry of Variable Charge Soils

Chemistry of Variable Charge Soils

Author: T. R. Yu

Publisher: Oxford University Press, USA

Published: 1997

Total Pages: 518

ISBN-13: 0195097459

DOWNLOAD EBOOK

This text explains the difference between the variable charge soils of tropical and subtropical regions, and the constant charge soils of temperate regions. It focuses on the chemical properties of the variable charge soils - properties which have an important bearing on soil management practices.


Automated Solution of Differential Equations by the Finite Element Method

Automated Solution of Differential Equations by the Finite Element Method

Author: Anders Logg

Publisher: Springer Science & Business Media

Published: 2012-02-24

Total Pages: 723

ISBN-13: 3642230997

DOWNLOAD EBOOK

This book is a tutorial written by researchers and developers behind the FEniCS Project and explores an advanced, expressive approach to the development of mathematical software. The presentation spans mathematical background, software design and the use of FEniCS in applications. Theoretical aspects are complemented with computer code which is available as free/open source software. The book begins with a special introductory tutorial for beginners. Following are chapters in Part I addressing fundamental aspects of the approach to automating the creation of finite element solvers. Chapters in Part II address the design and implementation of the FEnicS software. Chapters in Part III present the application of FEniCS to a wide range of applications, including fluid flow, solid mechanics, electromagnetics and geophysics.