Soil Physics with BASIC

Soil Physics with BASIC

Author: G.S. Campbell

Publisher: Elsevier

Published: 1985-11-01

Total Pages: 167

ISBN-13: 0080869823

DOWNLOAD EBOOK

This book covers material taught in a graduate-level soil physics course at Washington State University. While most soil physics courses dwell mainly on deriving rather than solving the differential equations for transport, the author's approach is to focus on solutions. Graduate students in agricultural and biological sciences usually have a good working knowledge of algebra and calculus, but not of differential equations. In order to teach methods for solving very difficult differential equations with difficult boundary conditions using fairly simple mathematical tools, the author uses numerical procedures on microcomputers to solve the differential equations. Numerical methods convert differential equations into algebraic equations which can be solved using conventional methods of linear algebra.This book reflects the philosophy used in the course. Each chapter introduces soil physics concepts, generally in the conventional way. Most chapters then go on to develop simple computer programs to solve the equations and illustrate the points made in the discussion. Problems at the end of each chapter help the reader practice using the concepts introduced in the chapter. The problems and computer programs are an integral part of the presentation, and readers are strongly encouraged to experiment with each model until both the working of the model and the concepts it teaches are familiar. Although the programs are generally short and relatively simple, they are suitable for use as submodels in large, general-purpose models of the soil-plant-atmosphere system, and have been used in this way by the author and by several of his students.Teachers and students alike will welcome this new textbook. It will enable graduate students to understand and solve transport problems which exist in field situations, and will provide them with a good working knowledge of soil physics - fundamental to so many other areas in soil, plant and engineering sciences.


Soil Physics with Python

Soil Physics with Python

Author: Marco Bittelli

Publisher:

Published: 2015

Total Pages: 461

ISBN-13: 0199683093

DOWNLOAD EBOOK

This innovative study presents concepts and problems in soil physics, and provides solutions using original computer programs. It provides a close examination of physical environments of soil, including an analysis of the movement of heat, water and gases. The authors employ the programminglanguage Python, which is now widely used for numerical problem solving in the sciences. In contrast to the majority of the literature on soil physics, this text focuses on solving, not deriving, differential equations for transport. Using numerical procedures to solve differential equations allowsthe solution of quite difficult problems with fairly simple mathematical tools. Numerical methods convert differential into algebraic equations, which can be solved using conventional methods of linear algebra. Each chapter introduces a soil physics concept, and proceeds to develop computer programsto solve the equations and illustrate the points made in the discussion.Problems at the end of each chapter help the reader practise using the concepts introduced. The text is suitable for advanced undergraduates, graduates and researchers of soil physics. It employs an open source philosophy where computer code is presented, explained and discussed, and provides thereader with a full understanding of the solutions. Once mastered, the code can be adapted and expanded for the user's own models, fostering further developments. The Python tools provide a simple syntax, Object Oriented Programming techniques, powerful mathematical and numerical tools, and a userfriendly environment.


Introduction to Environmental Soil Physics

Introduction to Environmental Soil Physics

Author: Daniel Hillel

Publisher: Elsevier

Published: 2003-12-17

Total Pages: 511

ISBN-13: 008049577X

DOWNLOAD EBOOK

An abridged, student-oriented edition of Hillel's earlier published Environmental Soil Physics, Introduction to Environmental Soil Physics is a more succinct elucidation of the physical principles and processes governing the behavior of soil and the vital role it plays in both natural and managed ecosystems. The textbook is self-contained and self-explanatory, with numerous illustrations and sample problems. Based on sound fundamental theory, the textbook leads to a practical consideration of soil as a living system in nature and illustrates the influences of human activity upon soil structure and function. Students, as well as other readers, will better understand the importance of soils and the pivotal possition they occupy with respect to careful and knowledgeable conservation. - Written in an engaging and clear style, posing and resolving issues relevant to the terrestrial environment - Explores the gamut of the interactions among the phases in the soil and the dynamic interconnection of the soil with the subterranean and atmospheric domains - Reveals the salient ideas, approaches, and methods of environmental soil physics - Includes numerous illustrative exercises, which are explicitly solved - Designed to serve for classroom and laboratory instruction, for self-study, and for reference - Oriented toward practical problems in ecology, field-scale hydrology, agronomy, and civil engineering - Differs from earlier texts in its wider scope and holistic environmental conception


Principles of Soil Physics

Principles of Soil Physics

Author: Rattan Lal

Publisher: CRC Press

Published: 2004-05-28

Total Pages: 736

ISBN-13: 9780824753245

DOWNLOAD EBOOK

Principles of Soil Physics examines the impact of the physical, mechanical, and hydrological properties and processes of soil on agricultural production, the environment, and sustainable use of natural resources. The text incorporates valuable assessment methods, graphs, problem sets, and tables from recent studies performed around the globe and offers an abundance of tables, photographs, and easy-to-follow equations in every chapter. The book discusses the consequences of soil degradation, such as erosion, inhibited root development, and poor aeration. It begins by defining soil physics, soil mechanics, textural properties, and packing arrangements . The text continues to discuss the theoretical and practical aspects of soil structure and explain the significance and measurement of bulk density, porosity, and compaction. The authors proceed to clarify soil hydrology topics including hydrologic cycle, water movement, infiltration, modeling, soil evaporation, and solute transport processes. They address the impact of soil temperature on crop growth, soil aeration, and the processes that lead to the emission of greenhouse gases. The final chapters examine the physical properties of gravelly soils and water movement in frozen, saline, and water-repellant soils. Reader-friendly and up-to-date, Principles of Soil Physics provides unparalleled coverage of issues related to soil physics, structure, hydrology, aeration, temperature, and analysis and presents practical techniques for maintaining soil quality to ultimately preserve its sustainability.


Essential Soil Physics

Essential Soil Physics

Author: K. H. Hartge

Publisher:

Published: 2016-11

Total Pages: 391

ISBN-13: 9781486307272

DOWNLOAD EBOOK

Soils are the porous skin of the Earth with variable and complex structures composed of solid, liquid and gaseous phases. This textbook (based on the 4th, German language edition) introduces the reader gently but comprehensively to soil physical processes. The authors discuss both the origin and dynamics of soil physical properties and functions -- including volume-mass relations of the solid, water and gas phases, grain and pore size distributions, permeability and storage capacity for water, gases and heat -- and finally soil deformation and strength in relation to mechanical and hydraulic stresses resulting in structural changes through compaction, kneading, slaking and soil crusting.


Soil Physics

Soil Physics

Author: Leonard D. Baver

Publisher: John Wiley & Sons

Published: 1972-11-17

Total Pages: 520

ISBN-13:

DOWNLOAD EBOOK

The soil as a disperse system; The viscosity and swelling of soil colloids; The dynamic properties of soils; Soil structure classification and genesis; Soil Structure-evaluation and agricultural significance; Soil aeration; The thermal regime of soils; Soil water retention; Soil water movement; Soil water-the field moisture regime; Soil water - plant relations; Soil water menagement; Soil erosion - water erosion; Soil erosion - wind erosion.


Fundamentals of Soil Physics

Fundamentals of Soil Physics

Author: Daniel Hillel

Publisher: Academic Press

Published: 2013-10-22

Total Pages: 432

ISBN-13: 0080918700

DOWNLOAD EBOOK

This book is not, in any case, in total defiance of the Wise Old Man's admonition, for it is not an entirely new book. Rather, it is an outgrowth of a previous treatise, written a decade ago, entitled "Soil and Water: Physical Principles and Processes." Though that book was well enough received at the time, the passage of the years has inevitably made it necessary to either revise and update the same book, or to supplant it with a fresh approach in the form of a new book which might incorporate still-pertient aspects of its predecessor without necessarily being limited to the older book's format or point of view.


Soil Physics with HYDRUS

Soil Physics with HYDRUS

Author: David E. Radcliffe

Publisher: CRC Press

Published: 2018-10-03

Total Pages: 388

ISBN-13: 1420073818

DOWNLOAD EBOOK

Numerical models have become much more efficient, making their application to problems increasingly widespread. User-friendly interfaces make the setup of a model much easier and more intuitive while increased computer speed can solve difficult problems in a matter of minutes. Co-authored by the software’s creator, Dr. Jirka Šimůnek, Soil Physics with HYDRUS: Modeling and Applications demonstrates one- and two-dimensional simulations and computer animations of numerical models using the HYDRUS software. Classroom-tested at the University of Georgia by Dr. David Radcliffe, this volume includes numerous examples and homework problems. It provides students with access to the HYDRUS-1D program as well as the Rosetta Module, which contains large volumes of information on the hydraulic properties of soils. The authors use HYDRUS-1D for problems that demonstrate infiltration, evaporation, and percolation of water through soils of different textures and layered soils. They also use it to show heat flow and solute transport in these systems, including the effect of physical and chemical nonequilibrium conditions. The book includes examples of two-dimensional flow in fields, hillslopes, boreholes, and capillary fringes using HYDRUS (2D/3D). It demonstrates the use of two other software packages, RETC and STANMOD, that complement the HYDRUS series. Hands-on use of the windows-based codes has proven extremely effective when learning the principles of water and solute movement, even for users with very little direct knowledge of soil physics and related disciplines and with limited mathematical expertise. Suitable for teaching an undergraduate or lower level graduate course in soil physics or vadose zone hydrology, the text can also be used for self-study on how to use the HYDRUS models. With the information in this book, you can run models for different scenarios and with different parameters, and thus gain a better understanding of the physics of water flow and contaminant transport.