A detailed and thorough reference on the discipline and practice of systems engineering The objective of the International Council on Systems Engineering (INCOSE) Systems Engineering Handbook is to describe key process activities performed by systems engineers and other engineering professionals throughout the life cycle of a system. The book covers a wide range of fundamental system concepts that broaden the thinking of the systems engineering practitioner, such as system thinking, system science, life cycle management, specialty engineering, system of systems, and agile and iterative methods. This book also defines the discipline and practice of systems engineering for students and practicing professionals alike, providing an authoritative reference that is acknowledged worldwide. The latest edition of the INCOSE Systems Engineering Handbook: Is consistent with ISO/IEC/IEEE 15288:2015 Systems and software engineering—System life cycle processes and the Guide to the Systems Engineering Body of Knowledge (SEBoK) Has been updated to include the latest concepts of the INCOSE working groups Is the body of knowledge for the INCOSE Certification Process This book is ideal for any engineering professional who has an interest in or needs to apply systems engineering practices. This includes the experienced systems engineer who needs a convenient reference, a product engineer or engineer in another discipline who needs to perform systems engineering, a new systems engineer, or anyone interested in learning more about systems engineering.
For the last century, the automotive industry has been dominated by internal combustion engines. Their flexibility of application, driving range, performance and sporty characteristics has resulted in several generations of this technology and has formed generations of engineers. But that is not the end of the story. Stricter legislation and increased environmental awareness have resulted in the development of new powertrain technologies in addition and parallel to the highly optimized internal combustion engine. Hybrid powertrains systems, pure battery electric systems and fuel cell systems, in conjunction with a diverse range of applications, have increased the spectrum of powertrain technologies. Furthermore, automated driving together with intelligent and highly connected systems are changing the way to get from A to B. Not only is the interaction of all these new technologies challenging, but also several different disciplines have to collaborate intensively in order for new powertrain systems to be successfully developed. These new technologies and the resulting challenges lead to an increase in system complexity. Approaches such as systems engineering are necessary to manage this complexity. To show how systems engineering manages the increasing complexity of modern powertrain systems, by providing processes, methods, organizational aspects and tools, this book has been structured into five parts. Starting with Challenges for Powertrain Development, which describes automotive-related challenges at different levels of the system hierarchy and from different point of views. The book then continues with the core part, Systems Engineering, in which all the basics of systems engineering, model-based systems engineering, and their related processes, methods, tools, and organizational matters are described. A special focus is placed on important standards and the human factor. The third part, Automotive Powertrain Systems Engineering Approach, puts the fundamentals of systems engineering into practice by adding the automotive context. This part focuses on system development and also considers the interactions to hardware and software development. Several approaches and methods are presented based on systems engineering philosophy. Part four, Powertrain Development Case Studies, adds the practical point of view by providing a range of case studies on powertrain system level and on powertrain element level and discusses the development of hybrid powertrain, internal combustion engines, e-drives, transmissions, batteries and fuel cell systems. Two case studies on a vehicle level are also presented. The final part, Outlook, considers the development of systems engineering itself with particular focus on information communication technologies. Even though this book covers systems engineering from an automotive perspective, many of the challenges, fundamental principles, conclusions and outlooks can be applied to other domains too. Therefore, this book is not only relevant for automotive engineers and students, but also for specialists in scientific and industrial positions in other domains and anyone who has to cope with the challenge of successfully developing complex systems with a large number of collaborating disciplines.
SYSTEMS ENGINEERING HANDBOOK A comprehensive reference on the discipline and practice of systems engineering Systems engineering practitioners provide a wide range of vital functions, conceiving, developing, and supporting complex engineered systems with many interacting elements. The International Council on Systems Engineering (INCOSE) Systems Engineering Handbook describes the state-of-the-good-practice of systems engineering. The result is a comprehensive guide to systems engineering activities across any number of possible projects. From automotive to defense to healthcare to infrastructure, systems engineering practitioners are at the heart of any project built on complex systems. INCOSE Systems Engineering Handbook readers will find: Elaboration on the key systems life cycle processes described in ISO/IEC/IEEE 15288:2023; Chapters covering key systems engineering concepts, system life cycle processes and methods, tailoring and application considerations, systems engineering in practice, and more; and Appendices, including an N2 diagram of the systems engineering processes and a detailed topical index. The INCOSE Systems Engineering Handbook is a vital reference for systems engineering practitioners and engineers in other disciplines looking to perform or understand the discipline of systems engineering.
This book provides a comprehensive overview of the field of software processes, covering in particular the following essential topics: software process modelling, software process and lifecycle models, software process management, deployment and governance, and software process improvement (including assessment and measurement). It does not propose any new processes or methods; rather, it introduces students and software engineers to software processes and life cycle models, covering the different types ranging from “classical”, plan-driven via hybrid to agile approaches. The book is structured as follows: In chapter 1, the fundamentals of the topic are introduced: the basic concepts, a historical overview, and the terminology used. Next, chapter 2 covers the various approaches to modelling software processes and lifecycle models, before chapter 3 discusses the contents of these models, addressing plan-driven, agile and hybrid approaches. The following three chapters address various aspects of using software processes and lifecycle models within organisations, and consider the management of these processes, their assessment and improvement, and the measurement of both software and software processes. Working with software processes normally involves various tools, which are the focus of chapter 7, before a look at current trends in software processes in chapter 8 rounds out the book. This book is mainly intended for graduate students and practicing professionals. It can be used as a textbook for courses and lectures, for self-study, and as a reference guide. When used as a textbook, it may support courses and lectures on software processes, or be used as complementary literature for more basic courses, such as introductory courses on software engineering or project management. To this end, it includes a wealth of examples and case studies, and each chapter is complemented by exercises that help readers gain a better command of the concepts discussed.
Over the past decade, there has been an increase in attention and focus on the discipline of software engineering. Software engineering tools and techniques have been developed to gain more predictable quality improvement results. Process standards such as Capability Maturity Model Integration (CMMI), ISO 9000, Software Process Improvement and Capability dEtermination (SPICE), Agile Methodologies, and others have been proposed to assist organizations to achieve more predictable results by incorporating these proven standards and procedures into their software process. Software Process Improvement and Management: Approaches and Tools for Practical Development offers the latest research and case studies on software engineering and development. The production of new process standards assist organizations and software engineers in adding a measure of predictability to the software process. Companies can gain a decisive competitive advantage by applying these new and theoretical methodologies in real-world scenarios. Researchers, scholars, practitioners, students, and anyone interested in the field of software development and design should access this book as a major compendium of the latest research in the field.
This book constitutes the refereed proceedings of the 12th International Conference on Software Process Improvement and Capability Determination, SPICE 2012, held in Palma de Mallorca, Spain, in May 2012. The 21 revised full papers presented and 14 short papers were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on organizational process improvement; SPI in small and very small enterprises; process models; SPI in automotive software and security; SPI in medical and safety critical systems; short papers.
This volume constitutes the refereed proceedings of the 26th European Conference on Systems, Software and Services Process Improvement, EuroSPI conference, held in Edinburgh, Scotland, in September 2019. The 18 revised full papers presented were carefully reviewed and selected from 28 submissions. They are organized in topical sections: Visionary Papers, SPI and Safety and Security, SPI and Assessments, SPI and Future Qualification & Team Performance, and SPI Manifesto and Culture. The selected workshop papers are also presented and organized in following topical sections: GamifySPI, Digitalisation of Industry, Infrastructure and E-Mobility. -Best Practices in Implementing Traceability. -Good and Bad Practices in Improvement. -Functional Safety and Cybersecurity. -Experiences with Agile and Lean. -Standards and Assessment Models. -Team Skills and Diversity Strategies. -Recent Innovations.
The primary purpose of systems engineering is to organize information and knowledge to assist those who manage, direct, and control the planning, development, production, and operation of the systems necessary to accomplish a given mission. However, this purpose can be compromised or defeated if information production and organization becomes an end unto itself. Systems engineering was developed to help resolve the engineering problems that are encountered when attempting to develop and implement large and complex engineering projects. It depends upon integrated program planning and development, disciplined and consistent allocation and control of design and development requirements and functions, and systems analysis. The key thesis of this report is that proper application of systems analysis and systems engineering will improve the management of tank wastes at the Hanford Site significantly, thereby leading to reduced life cycle costs for remediation and more effective risk reduction. The committee recognizes that evidence for cost savings from application of systems engineering has not been demonstrated yet.
Computer software, Software engineering techniques, Computer programs, Life (durability), Data management, Process specification, Technical documents, Technical writing, Data layout