Robot-assisted healthcare offers benefits for repetitive, intensive and task specific training compared to traditional manual manipulation performed by physiotherapists. However, a majority of existing rehabilitation devices use rigid actuators such as electric motors or hydraulic cylinders which cannot guarantee the safety of patients. This book provides biomedical engineering and robotics professionals and students with the fundamental mechatronic engineering knowledge to analyze and design new soft robotic devices. The authors present a systematic investigation of the design, modelling, methods, and control methods, implementation and novel applications of mechatronics to provide better clinical rehabilitation services and new insights into emerging technologies utilized in soft robots for healthcare.
This book presents novel applications of mechatronics to provide better clinical rehabilitation services and new insights into emerging technologies utilized in soft robots for healthcare, and is essential reading for researchers and students working in these and related fields.
AIoT (Artificial Intelligence of Things) and Big Data Analytics are catalyzing a healthcare revolution. This book is an accessible volume that summarizes the information available. In this book, researchers explore how AIoT and Big Data can seamlessly integrate into healthcare, enhancing medical services and devices while adhering to established protocols. The book demonstrates the crucial role of these technologies during healthcare crises like the COVID-19 pandemic. It presents novel solutions and computational techniques powered by AIoT, Machine Learning, and Deep Learning, providing a new frontier in healthcare problem-solving. Key Features: Real-Life Illustrations: Real-world examples showcase AIoT and Big Data in action, highlighting their impact in healthcare. Comprehensive Exploration: The book offers a thorough examination of AIoT, Big Data, and their harmonious synergy within the healthcare landscape. Visual Aids: Complex concepts become approachable through diagrams, flowcharts, and infographics, making technical processes and system designs more digestible. Ethical Insights: Delving into the ethical dimensions of AIoT and Big Data, it addresses concerns like data bias, patient consent, and transparency in healthcare. Forward-Looking Discourse: The book engages with emerging trends, potential innovations, and the future direction of AIoT and Big Data, making it a compass for healthcare transformation. Researchers, whether from academia, industry, or research and development organizations, interested in AIoT, Big Data, artificial intelligence, and healthcare optimization, will find this book informative. It also serves as an update for tech enthusiasts who want to explore the future of healthcare powered by AI and data.
Flexible Robotics in Medicine: A Design Journey of Motion Generation Mechanisms and Biorobotic System Development provides a resource of knowledge and successful prototypes regarding flexible robots in medicine. With specialists in the medical field increasingly utilizing robotics in medical procedures, it is vital to improve current knowledge regarding technologies available. This book covers the background, medical requirements, biomedical engineering principles, and new research on soft robots, including general flexible robotic systems, design specifications, design rationale, fabrication, verification experiments, actuators and sensors in flexible medical robotic systems. Presenting several projects as examples, the authors also discuss the pipeline to develop a medical robotic system, including important milestones such as involved regulations, device classifications and medical standards.
Medical and Healthcare Robotics: New Paradigms and Recent Advances provides an overview and exclusive insights into current trends, the most recent innovations, and concerns in medical robotics. The book covers the major areas of medical robotics, including rehabilitation devices, artificial organs, assistive technologies, service robotics, and robotic devices for surgery, exploration, diagnosis, therapy, and training. It highlights the limitations and the importance of robotics and artificial intelligence for medical and healthcare applications. The book is a timely and comprehensive reference guide for undergraduate-level students, graduate students, and researchers in the fields of electrical engineering, mechanical engineering, mechatronics, control systems engineering, and biomedical engineering. It can be useful for master's programs, leading consultants, and industrial companies. The book can be of high interest for physicians and physiotherapists and all technical people in the medical and biomedical fields. - Covers the main areas of medical and healthcare robotics - Presents the most recent innovations and trends in medical and healthcare robotics - Contains chapters written by eminent researchers in the field
As society transitions into the digital age, the demand for advanced robotics and autonomous systems has remained unchanged. However, the field faces significant challenges bridging the gap between current capabilities and the potential for brilliant, autonomous machines. While exact and efficient, current robotic systems need more sophistication and adaptability of human intelligence. This limitation restricts their application in complex and dynamic environments, hindering their ability to realize their potential fully. Multidisciplinary Applications of AI Robotics and Autonomous Systems addresses these challenges by presenting cutting-edge research and innovative robotics and autonomous systems solutions. By exploring topics such as digital transformation, IoT, AI, and cloud-native computing paradigms, readers will understand the latest advancements in the field. The book delves into theoretical frameworks, computational models, and experimental approaches, offering insights to help researchers and practitioners develop more intelligent and autonomous machines.
This book offers a comprehensive, timely snapshot of current research, technologies and applications of soft robotics. The different chapters, written by international experts across multiple fields of soft robotics, cover innovative systems and technologies for soft robot legged locomotion, soft robot manipulation, underwater soft robotics, biomimetic soft robotic platforms, plant-inspired soft robots, flying soft robots, soft robotics in surgery, as well as methods for their modeling and control. Based on the results of the second edition of the Soft Robotics Week, held on April 25 – 30, 2016, in Livorno, Italy, the book reports on the major research lines and novel technologies presented and discussed during the event.
Lays a good foundation for robotics' core concepts and principles in biomedical and healthcare engineering, walking the reader through the fundamental ideas with expert ease. Progresses on the topics in a step-by-step manner and reinforces theory with a full-fledged pedagogy designed to enhance students' understanding and offer them a practical insight into its applications. Features chapters that introduce and cover novel ideas in healthcare engineering like Applications of Robots in Surgery, Microrobots and Nanorobots in Healthcare Practices, Intelligent walker for posture monitoring, AI-Powered Robots in Biomedical and Hybrid Intelligent System for Medical Diagnosis, etc.
This book discusses research in Artificial Intelligence for the Internet of Health Things. It investigates and explores the possible applications of machine learning, deep learning, soft computing, and evolutionary computing techniques in design, implementation, and optimization of challenging healthcare solutions. This book features a wide range of topics such as AI techniques, IoT, cloud, wearables, and secured data transmission. Written for a broad audience, this book will be useful for clinicians, health professionals, engineers, technology developers, IT consultants, researchers, and students interested in the AI-based healthcare applications. Provides a deeper understanding of key AI algorithms and their use and implementation within the wider healthcare sector Explores different disease diagnosis models using machine learning, deep learning, healthcare data analysis, including machine learning, and data mining and soft computing algorithms Discusses detailed IoT, wearables, and cloud-based disease diagnosis model for intelligent systems and healthcare Reviews different applications and challenges across the design, implementation, and management of intelligent systems and healthcare data networks Introduces a new applications and case studies across all areas of AI in healthcare data K. Shankar (Member, IEEE) is a Postdoctoral Fellow of the Department of Computer Applications, Alagappa University, Karaikudi, India. Eswaran Perumal is an Assistant Professor of the Department of Computer Applications, Alagappa University, Karaikudi, India. Dr. Deepak Gupta is an Assistant Professor of the Department Computer Science & Engineering, Maharaja Agrasen Institute of Technology (GGSIPU), Delhi, India.