Soft Condensed Matter Physics in Molecular and Cell Biology

Soft Condensed Matter Physics in Molecular and Cell Biology

Author: W.C.K. Poon

Publisher: CRC Press

Published: 2006-01-13

Total Pages: 340

ISBN-13: 142000333X

DOWNLOAD EBOOK

Soft condensed matter physics, which emerged as a distinct branch of physics in the 1990s, studies complex fluids: liquids in which structures with length scale between the molecular and the macroscopic exist. Polymers, liquid crystals, surfactant solutions, and colloids fall into this category. Physicists deal with properties of soft matter system


Fundamentals of Soft Matter Science

Fundamentals of Soft Matter Science

Author: Linda S. Hirst

Publisher: CRC Press

Published: 2012-11-06

Total Pages: 249

ISBN-13: 1439827753

DOWNLOAD EBOOK

Soft materials such as liquid crystals, polymers, biomaterials, and colloidal systems touch every aspect of our lives. Not surprisingly, the rapid growth of these fields over the past few decades has resulted in an explosion of soft matter research groups worldwide. Fundamentals of Soft Matter Science introduces and explores the scientific study of soft matter and molecular self-assembly, covering the major classifications of materials, their structure and characteristics, and everyday applications. Designed for beginners to the field with a basic scientific background, this readable book emphasizes conceptual understanding, minimizing detailed mathematical derivations. Each chapter is dedicated to a different group of soft materials, including liquid crystals, surfactants, polymers, colloids, and soft biomaterials. Each subject is broken down into the essential concepts: material structures and physical characteristics, some simple theoretical ideas, and important experimental methods. The book emphasizes commonly used experimental techniques and practical applications. Full color illustrations and photographs are incorporated throughout to help describe the systems and key concepts.


Statistical Physics for Biological Matter

Statistical Physics for Biological Matter

Author: Wokyung Sung

Publisher: Springer

Published: 2018-10-19

Total Pages: 444

ISBN-13: 940241584X

DOWNLOAD EBOOK

This book aims to cover a broad range of topics in statistical physics, including statistical mechanics (equilibrium and non-equilibrium), soft matter and fluid physics, for applications to biological phenomena at both cellular and macromolecular levels. It is intended to be a graduate level textbook, but can also be addressed to the interested senior level undergraduate. The book is written also for those involved in research on biological systems or soft matter based on physics, particularly on statistical physics. Typical statistical physics courses cover ideal gases (classical and quantum) and interacting units of simple structures. In contrast, even simple biological fluids are solutions of macromolecules, the structures of which are very complex. The goal of this book to fill this wide gap by providing appropriate content as well as by explaining the theoretical method that typifies good modeling, namely, the method of coarse-grained descriptions that extract the most salient features emerging at mesoscopic scales. The major topics covered in this book include thermodynamics, equilibrium statistical mechanics, soft matter physics of polymers and membranes, non-equilibrium statistical physics covering stochastic processes, transport phenomena and hydrodynamics. Generic methods and theories are described with detailed derivations, followed by applications and examples in biology. The book aims to help the readers build, systematically and coherently through basic principles, their own understanding of nonspecific concepts and theoretical methods, which they may be able to apply to a broader class of biological problems.


The Oxford Handbook of Soft Condensed Matter

The Oxford Handbook of Soft Condensed Matter

Author: Eugene Michael Terentjev

Publisher: Oxford University Press, USA

Published: 2015

Total Pages: 605

ISBN-13: 0199667926

DOWNLOAD EBOOK

This handbook will provide the reader with a profound introduction to the key subjects comprising the relatively new topic of Soft Condensed Matter. It will provide students and researchers with an authoritative overview of the field, identify key principles at play, and the most prominent ways of further development.


Giant Molecules

Giant Molecules

Author: A. I?U. Grosberg

Publisher: World Scientific

Published: 2011

Total Pages: 347

ISBN-13: 9812839224

DOWNLOAD EBOOK

?? Giant molecules are important in our everyday life. But, as pointed out by the authors, they are also associated with a culture. What Bach did with the harpsichord, Kuhn and Flory did with polymers. We owe a lot of thanks to those who now make this music accessible ??Pierre-Gilles de GennesNobel Prize laureate in Physics(Foreword for the 1st Edition, March 1996)This book describes the basic facts, concepts and ideas of polymer physics in simple, yet scientifically accurate, terms. In both scientific and historic contexts, the book shows how the subject of polymers is fascinating, as it is behind most of the wonders of living cell machinery as well as most of the newly developed materials. No mathematics is used in the book beyond modest high school algebra and a bit of freshman calculus, yet very sophisticated concepts are introduced and explained, ranging from scaling and reptations to protein folding and evolution. The new edition includes an extended section on polymer preparation methods, discusses knots formed by molecular filaments, and presents new and updated materials on such contemporary topics as single molecule experiments with DNA or polymer properties of proteins and their roles in biological evolution.


Fundamentals of Soft Matter Science

Fundamentals of Soft Matter Science

Author: Linda S. Hirst

Publisher: CRC Press

Published: 2019-08-09

Total Pages: 266

ISBN-13: 1351754912

DOWNLOAD EBOOK

This revised edition continues to provide the most approachable introduction to the structure, characteristics, and everyday applications of soft matter. It begins with a substantially revised overview of the underlying physics and chemistry common to soft materials. Subsequent chapters comprehensively address the different classes of soft materials, from liquid crystals to surfactants, polymers, colloids, and biomaterials, with vivid, full-color illustrations throughout. There are new worked examples throughout, new problems, some deeper mathematical treatment, and new sections on key topics such as diffusion, active matter, liquid crystal defects, surfactant phases and more. • Introduces the science of soft materials, experimental methods used in their study, and wide-ranging applications in everyday life. • Provides brand new worked examples throughout, in addition to expanded chapter problem sets and an updated glossary. • Includes expanded mathematical content and substantially revised introductory chapters. This book will provide a comprehensive introductory resource to both undergraduate and graduate students discovering soft materials for the first time and is aimed at students with an introductory college background in physics, chemistry or materials science.


Ion Correlations at Electrified Soft Matter Interfaces

Ion Correlations at Electrified Soft Matter Interfaces

Author: Nouamane Laanait

Publisher: Springer Science & Business Media

Published: 2013-07-30

Total Pages: 122

ISBN-13: 3319009001

DOWNLOAD EBOOK

Ion Correlations at Electrified Soft Matter Interfaces presents an investigation that combines experiments, theory, and computer simulations to demonstrate that the interdependency between ion correlations and other ion interactions in solution can explain the distribution of ions near an electrified liquid/liquid interface. The properties of this interface are exploited to vary the coupling strength of ion-ion correlations from weak to strong while monitoring their influence on ion distributions at the nanometer scale with X-ray reflectivity and on the macroscopic scale with interfacial tension measurements. This thesis demonstrates that a parameter-free density functional theory that includes ion-ion correlations and ion-solvent interactions is in agreement with the data over the entire range of experimentally tunable correlation coupling strengths. The reported findings represent a significant advance towards understanding the nature and role of ion correlations in charged soft-matter. Ion distributions underlie many scientific phenomena and technological applications, including electrostatic interactions between charged biomolecules and the efficiency of energy storage devices. These distributions are determined by interactions dictated by the chemical properties of the ions and their environment, as well as the long-range nature of the electrostatic force. The presence of strong correlations between ions is responsible for counterintuitive effects such as like-charge attraction.


Physics of Complex Colloids

Physics of Complex Colloids

Author: C. Bechinger

Publisher: IOS Press

Published: 2013-06-24

Total Pages: 639

ISBN-13: 1614992789

DOWNLOAD EBOOK

Colloids are systems comprised of particles of mesoscopic size suspended in a liquid. They have recently been attracting increased attention from scientists and engineers due to the fact that they are nowadays present in many industrial products such as paints, oil additives, electronic ink displays and drugs. Colloids also serve as versatile model systems for phenomena and structures from solid-state physics, surface science and statistical mechanics, and can easily be studied using tabletop experiments to provide insight into processes not readily accessible in atomic systems. This book presents the lectures delivered at the 2012 Enrico Fermi School ‘Physics of Complex Colloids’, held in Varenna, Italy, in July 2012. The school addressed experimental, theoretical and numerical results and methods, and the lectures covered a broad spectrum of topics from the starting point of the synthesis of colloids and their use in commercial products. The lectures review the state-of-the-art of colloidal science in a pedagogical way, discussing both the basics and the latest results, and this book will serve as a reference for both students and experts in this rapidly growing field.


Mechanics of the Cell

Mechanics of the Cell

Author: David H. Boal

Publisher: Cambridge University Press

Published: 2012-01-19

Total Pages: 623

ISBN-13: 0521113768

DOWNLOAD EBOOK

New edition exploring the mechanical features of biological cells for advanced undergraduate and graduate students in physics and biomedical engineering.


Electrostatics of Soft and Disordered Matter

Electrostatics of Soft and Disordered Matter

Author: David S. Dean

Publisher: CRC Press

Published: 2014-05-02

Total Pages: 450

ISBN-13: 981441185X

DOWNLOAD EBOOK

Recently, there has been a surge of activity to elucidate the behavior of highly charged soft matter and Coulomb fluids in general. Such systems are ubiquitous, especially in biological matter where the length scale and the strength of the interaction between highly charged biomolecules are governed by strong electrostatic effects. Several interesting limits have been discovered in the parameter space of highly charged many-particle Coulomb matter where analytical progress is possible and completely novel and unexpected results have been obtained. One of the challenges in highly charged matter is to correctly describe systems with finite coupling strength in the transition regime between weak and strong couplings. After studying the fluctuations of both, several theories have been developed that describe this experimentally highly relevant regime. At the same time, computer simulation algorithms and computing power have advanced to the level where all-ion simulations, including many-body and polarization effects, are possible; the new theories thus can be subjected to numerical confirmation. Another important question is the effect of the structural disorder on electrostatic interactions. It has recently been demonstrated, both theoretically and experimentally, that charge disorder can impose long-range interaction between charged or even uncharged surfaces. These interactions might become very significant in biological processes. Filling a void in the literature, this volume cross-pollinates different theoretical and simulation approaches with new experiments and ties together the low temperature, high coupling constant, and disorder parameters in a unified description of the electrostatic interactions, which largely determine the stability and conformations of most important biological macromolecules. With striking graphical illustrations, the book presents a unified view of the current advances in the field of Coulomb (bio)colloidal systems, building on previous literature that summarized the field over 20 years ago. Leading scientists in the field offer a detailed introduction to different modern methods in statistical physics of Coulomb systems. They detail various approaches to elucidate the behavior of strongly charged soft matter. They also provide experimental and theoretical descriptions of disorder effects in Coulomb systems, which have not been discussed in any other book.