This text offers an introduction to the properties and behaviour of soft matter. It begins with a treatment of the underlying principles, then discusses how the properties of certain substances and systems are treated within this framework.
Soft condensed matter physics, which emerged as a distinct branch of physics in the 1990s, studies complex fluids: liquids in which structures with length scale between the molecular and the macroscopic exist. Polymers, liquid crystals, surfactant solutions, and colloids fall into this category. Physicists deal with properties of soft matter system
Self-assembly is one of the key concepts in contemporary soft condensed matter. It is an umbrella term which encompasses the various modes of spontaneous organization of micrometer-and submicrometer-sized particles into ordered structures of various degrees of complexity, yet it often relies on remarkably simple interactions and mechanisms. Self-assembly is one of the key principles used by nature to construct living matter, where it frequently takes place in a hierarchical fashion.This book contains the lectures from the Enrico Fermi summer school: Soft Matter Self-assembly, held in Varenna, Italy, in June and July 2015. The primary aim of the school was to cover the most exciting modern aspects of self-assembly in soft condensed matter physics, and to enable Ph.D. students and postdocs to engage with some of the most exciting and current topics in the physics of colloids through a series of mini-courses and seminars hosted by leading figures in the field.Subjects covered include: colloids with directional bonding; pathways of self-organization; self-assembly hydrodynamics; polymer structure and dynamics; liquid-crystal colloid dispersions; and self-organizing nanosystems.The proceedings also include two reprints from Reviews of Modern Physics, and will be of interest to both students and experts in the field.
This handbook will provide the reader with a profound introduction to the key subjects comprising the relatively new topic of Soft Condensed Matter. It will provide students and researchers with an authoritative overview of the field, identify key principles at play, and the most prominent ways of further development.
Soft matter (polymers, colloids, surfactants, liquid crystals) are an important class of materials for modern and future technologies. They are complex materials that behave neither like a fluid nor a solid. This book describes the characteristics of such materials and how we can understand such characteristics in the language of physics.
Soft condensed matter physics relies on a fundamental understanding at the interface between physics, chemistry, biology, and engineering for a host of materials and circumstances that are related to, but outside, the traditional definition of condensed matter physics. Featuring contributions from leading researchers in the field, this book uniquely discusses both the contemporary experimental and computational manifestations of soft condensed matter systems. From particle tracking and image analysis, novel materials and computational methods, to confocal microscopy and bacterial assays, this book will equip the reader for collaborative and interdisciplinary research efforts relating to a range of modern problems in nonlinear and non-equilibrium systems. It will enable both graduate students and experienced researchers to supplement a more traditional understanding of thermodynamics and statistical systems with knowledge of the techniques used in contemporary investigations. Color versions of a selection of the figures are available at www.cambridge.org/9780521115902.
The study of "soft matter" materials with complex properties has raised a number of interesting problems in basic physics, biology, and materials science, all of which promise new and important technological applications. After a review of chemical bonds and phase transitions, the authors treat topics such as surface phenomena, stability of colloidal systems, structural properties of polymers, and topological defects. The monograph's emphasis on underlying physical principles offers a coherent treatment of the great variety of research in the field.
Introduction. Role of modeling in soft matter physics / D. Frenkel -- 1. Applications of density functional theory in soft condensed matter / H. Lowen -- 2. Polymer phase separation / M. Muller -- 3. Self-consistent field theory of block copolymers / F. Qiu, A.-C. Shi and Y. Yang -- 4. Dynamic self-consistent field theories for polymer blends and block copolymers / T. Kawakatsu -- 5. Molecular dynamics in crystallization of helical polymers : crystal ordering and chirality selection / T. Yamamoto -- 6. Interplay of liquid-liquid demixing and polymer crystallization / W. Hu -- 7. Elucidation of single molecular observation of a giant DNA / C.-Y. Shew and K. Yoshikawa -- 8. Theoretical modeling of hydrogen bonding in macro-molecular solutions : the combination of quantum mechanics and molecular mechanics / J. Ma, N. Jiang and H. Li -- 9. Exotic electrostatics : unusual features of electrostatic interactions between macroions / A. Naji ... [et al.] -- 10. Computer modeling of liquid crystals / R. Hashim -- 11. Drop dynamics in complex fluids / J. J. Feng ... [et al.]
In a liquid crystal watch, the molecules contained within a thin film of the screen are reorientated each second by extremely weak electrical signals. Here is a fine example of soft matter: molecular systems giving a strong response to a very weak command signal. They can be found almost everywhere. Soft magnetic materials used in transformers exhibit a strong magnetic moment under the action of a weak magnetic field. Take a completely different domain: gelatin, formed from col lagen fibres dissolved in hot water. When we cool below 37°C, gelation occurs, the chains joining up at various points to form a loose and highly deformable network. This is a natural example of soft matter. Going further, rather than consider a whole network, we could take a single chain of flexible polymer, such as polyoxyethylene [POE = (CH CH O)N, 2 2 5 where N rv 10 ], for example, in water. Such a chain is fragile and may break under flow. Even though hydrodynamic forces are very weak on the molecular scale, their cumulated effect may be significant. Think of a rope pulled from both ends by two groups of children. Even if each girl and boy cannot pull very hard, the rope can be broken when there are enough children pulling.
Now in paperback, this book provides an overview of the physics of condensed matter systems. Assuming a familiarity with the basics of quantum mechanics and statistical mechanics, the book establishes a general framework for describing condensed phases of matter, based on symmetries and conservation laws. It explores the role of spatial dimensionality and microscopic interactions in determining the nature of phase transitions, as well as discussing the structure and properties of materials with different symmetries. Particular attention is given to critical phenomena and renormalization group methods. The properties of liquids, liquid crystals, quasicrystals, crystalline solids, magnetically ordered systems and amorphous solids are investigated in terms of their symmetry, generalised rigidity, hydrodynamics and topological defect structure. In addition to serving as a course text, this book is an essential reference for students and researchers in physics, applied physics, chemistry, materials science and engineering, who are interested in modern condensed matter physics.