Sodium Fast Reactors with Closed Fuel Cycle

Sodium Fast Reactors with Closed Fuel Cycle

Author: Baldev Raj

Publisher: CRC Press

Published: 2015-04-15

Total Pages: 901

ISBN-13: 1466587695

DOWNLOAD EBOOK

Sodium Fast Reactors with Closed Fuel Cycle delivers a detailed discussion of an important technology that is being harnessed for commercial energy production in many parts of the world. Presenting the state of the art of sodium-cooled fast reactors with closed fuel cycles, this book:Offers in-depth coverage of reactor physics, materials, design, s


OPERATING EXPERIENCE WITH THE SODIUM REACTOR EXPERIMENT AND ITS APPLICATION TO THE HALLAM NUCLEAR POWER FACILITY.

OPERATING EXPERIENCE WITH THE SODIUM REACTOR EXPERIMENT AND ITS APPLICATION TO THE HALLAM NUCLEAR POWER FACILITY.

Author:

Publisher:

Published: 1960

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

The Sodium Reactor Experiment (SRE) was constructed to demonstrate the feasibility of sodium-oooled graphitemoderated reactors for central station power. The operating experience of SRE has provided valuable data for the design of the Hallam Nuclear Power Facillty (HNPF) now under construction. Some of the difficulties found in the SRE, which HNPF will be designed to avoid, are the sodium-sodium intermediate heat exchanger (horizontal position in SRE gave trouble; a vertical position will be used in HNPF), sodium pumps, handling of broken fuel elements, and excessive thermal stresses due to inadequate coolant flow. Other features of HNPF include the addition of an activity monitoring system for the core cover gas, elimination of tetralin for auxiliary cooling of plant equipment, instrumentation of fuel elements, and addition of carbon traps in the primary sodium system. SRE operation has demonstrated unusual reactor stability and capability for rapid power changes. (D.L.C.).


Structural Materials for Generation IV Nuclear Reactors

Structural Materials for Generation IV Nuclear Reactors

Author: Pascal Yvon

Publisher: Woodhead Publishing

Published: 2016-08-27

Total Pages: 686

ISBN-13: 0081009127

DOWNLOAD EBOOK

Operating at a high level of fuel efficiency, safety, proliferation-resistance, sustainability and cost, generation IV nuclear reactors promise enhanced features to an energy resource which is already seen as an outstanding source of reliable base load power. The performance and reliability of materials when subjected to the higher neutron doses and extremely corrosive higher temperature environments that will be found in generation IV nuclear reactors are essential areas of study, as key considerations for the successful development of generation IV reactors are suitable structural materials for both in-core and out-of-core applications. Structural Materials for Generation IV Nuclear Reactors explores the current state-of-the art in these areas. Part One reviews the materials, requirements and challenges in generation IV systems. Part Two presents the core materials with chapters on irradiation resistant austenitic steels, ODS/FM steels and refractory metals amongst others. Part Three looks at out-of-core materials. Structural Materials for Generation IV Nuclear Reactors is an essential reference text for professional scientists, engineers and postgraduate researchers involved in the development of generation IV nuclear reactors. Introduces the higher neutron doses and extremely corrosive higher temperature environments that will be found in generation IV nuclear reactors and implications for structural materials Contains chapters on the key core and out-of-core materials, from steels to advanced micro-laminates Written by an expert in that particular area


Experimental Breeder Reactor-II (EBR-II)

Experimental Breeder Reactor-II (EBR-II)

Author: Leonard J. Koch

Publisher:

Published: 2008

Total Pages: 264

ISBN-13:

DOWNLOAD EBOOK

Koch, former manager of the Experimental Breeder Reactor-II (EBR-II), offers a first-hand account of the development, design, construction, and initial operation of this facility, which has contributed to the foundation of knowledge for all fast reactors. He explains why certain design choices were made while others were rejected. He also outlines how he thinks that future sodium cooled fast reactors should be designed, based on the experience gained with EBR-II. An appendix traces the lineage of EBR-II, including original memos and meeting notes, beginning with Enrico Fermi and Walter Zinn and progressing to the formation of the EBR-II project. B&w photos and illustrations are included. The book is of interest to designers of future fast reactors. There is no subject index.