Smooth

Smooth

Author: Matt Burns

Publisher: Candlewick Press

Published: 2020-06-16

Total Pages: 369

ISBN-13: 1536211842

DOWNLOAD EBOOK

Kevin’s acne is horribly, hideously bad. Can a risky treatment fix his face — and his entire life? A witty and sharply observed debut. Fifteen-year-old Kevin has acne, and not just any acne. Stinging red welts, painful pustules, and massive whiteheads are ruining his life. In an act of desperation, he asks his dermatologist to prescribe him a drug with a dizzying list of possible side effects — including depression — and an obligatory monthly blood test. But when he meets Alex, a girl in the lab waiting room, blood test day quickly becomes his safe haven — something he sorely needs, since everyone, including his two best friends, is trying his last nerve. But as Kevin’s friendships slip further away and he discovers who Alex is outside of the lab, he realizes he's not sure about anything anymore. Are loneliness and self-doubt the side effects of his new acne meds? Or are they the side effects of being fifteen? Told in a bitingly funny first-person narration, this debut novel crackles with wry and wistful insights about the absurdities of high school, longing and heartbreak, and a body out of control. A surefire hit for teen boys and reluctant readers, Smooth gets under the skin of a tenth-grader who is changing — inside and out.


Spiky, Slimy, Smooth

Spiky, Slimy, Smooth

Author: Jane Brocket

Publisher: Millbrook Press

Published: 2011-01-01

Total Pages: 36

ISBN-13: 0761374582

DOWNLOAD EBOOK

Soft, gooey, fluffy, prickly—textures are all around us. What clever words will you use to describe the textures pictured in this book? Jane Brocket's appealing photography and simple, whimsical text give a fresh approach to a topic all young children learn about.


Models for Smooth Infinitesimal Analysis

Models for Smooth Infinitesimal Analysis

Author: Ieke Moerdijk

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 401

ISBN-13: 147574143X

DOWNLOAD EBOOK

The aim of this book is to construct categories of spaces which contain all the C?-manifolds, but in addition infinitesimal spaces and arbitrary function spaces. To this end, the techniques of Grothendieck toposes (and the logic inherent to them) are explained at a leisurely pace and applied. By discussing topics such as integration, cohomology and vector bundles in the new context, the adequacy of these new spaces for analysis and geometry will be illustrated and the connection to the classical approach to C?-manifolds will be explained.


Introduction to Smooth Ergodic Theory

Introduction to Smooth Ergodic Theory

Author: Luís Barreira

Publisher: American Mathematical Society

Published: 2023-04-28

Total Pages: 355

ISBN-13: 1470473070

DOWNLOAD EBOOK

This book is the first comprehensive introduction to smooth ergodic theory. It consists of two parts: the first introduces the core of the theory and the second discusses more advanced topics. In particular, the book describes the general theory of Lyapunov exponents and its applications to the stability theory of differential equations, the concept of nonuniform hyperbolicity, stable manifold theory (with emphasis on absolute continuity of invariant foliations), and the ergodic theory of dynamical systems with nonzero Lyapunov exponents. A detailed description of all the basic examples of conservative systems with nonzero Lyapunov exponents, including the geodesic flows on compact surfaces of nonpositive curvature, is also presented. There are more than 80 exercises. The book is aimed at graduate students specializing in dynamical systems and ergodic theory as well as anyone who wishes to get a working knowledge of smooth ergodic theory and to learn how to use its tools. It can also be used as a source for special topics courses on nonuniform hyperbolicity. The only prerequisite for using this book is a basic knowledge of real analysis, measure theory, differential equations, and topology, although the necessary background definitions and results are provided. In this second edition, the authors improved the exposition and added more exercises to make the book even more student-oriented. They also added new material to bring the book more in line with the current research in dynamical systems.


A Primer On Smooth Manifolds

A Primer On Smooth Manifolds

Author: Luca Vitagliano

Publisher: World Scientific

Published: 2024-02-27

Total Pages: 299

ISBN-13: 9811283966

DOWNLOAD EBOOK

Differential Geometry is one of the major branches of current Mathematics, and it is an unavoidable language in modern Physics. The main characters in Differential Geometry are smooth manifolds: a class of geometric objects that locally behave like the standard Euclidean space.The book provides a first introduction to smooth manifolds, aimed at undergraduate students in Mathematics and Physics. The only prerequisites are the Linear Algebra and Calculus typically covered in the first two years. The presentation is as simple as possible, but it does not sacrifice the rigor.The lecture notes are divided into 10 chapters, with gradually increasing difficulty. The first chapters cover basic material, while the last ones present more sophisticated topics. The definitions, propositions, and proofs are complemented by examples and exercises. The exercises, which include part of the proofs, are designed to help the reader learn the language of Differential Geometry and develop their problem-solving skills in the area. The exercises are also aimed at promoting an active learning process. Finally, the book contains pictures which are useful aids for the visualization of abstract geometric situations. The lecture notes can be used by instructors as teaching material in a one-semester course on smooth manifolds.


The Creation of Strange Non-Chaotic Attractors in Non-Smooth Saddle-Node Bifurcations

The Creation of Strange Non-Chaotic Attractors in Non-Smooth Saddle-Node Bifurcations

Author: Tobias H. JŠger

Publisher: American Mathematical Soc.

Published: 2009-08-07

Total Pages: 120

ISBN-13: 082184427X

DOWNLOAD EBOOK

The author proposes a general mechanism by which strange non-chaotic attractors (SNA) are created during the collision of invariant curves in quasiperiodically forced systems. This mechanism, and its implementation in different models, is first discussed on an heuristic level and by means of simulations. In the considered examples, a stable and an unstable invariant circle undergo a saddle-node bifurcation, but instead of a neutral invariant curve there exists a strange non-chaotic attractor-repeller pair at the bifurcation point. This process is accompanied by a very characteristic behaviour of the invariant curves prior to their collision, which the author calls `exponential evolution of peaks'.


Bifurcations in Piecewise-smooth Continuous Systems

Bifurcations in Piecewise-smooth Continuous Systems

Author: David John Warwick Simpson

Publisher: World Scientific

Published: 2010

Total Pages: 255

ISBN-13: 9814293849

DOWNLOAD EBOOK

Real-world systems that involve some non-smooth change are often well-modeled by piecewise-smooth systems. However there still remain many gaps in the mathematical theory of such systems. This doctoral thesis presents new results regarding bifurcations of piecewise-smooth, continuous, autonomous systems of ordinary differential equations and maps. Various codimension-two, discontinuity induced bifurcations are unfolded in a rigorous manner. Several of these unfoldings are applied to a mathematical model of the growth of Saccharomyces cerevisiae (a common yeast). The nature of resonance near border-collision bifurcations is described; in particular, the curious geometry of resonance tongues in piecewise-smooth continuous maps is explained in detail. NeimarkSacker-like border-collision bifurcations are both numerically and theoretically investigated. A comprehensive background section is conveniently provided for those with little or no experience in piecewise-smooth systems.


An Introduction to Optimization on Smooth Manifolds

An Introduction to Optimization on Smooth Manifolds

Author: Nicolas Boumal

Publisher: Cambridge University Press

Published: 2023-03-16

Total Pages: 358

ISBN-13: 1009178717

DOWNLOAD EBOOK

Optimization on Riemannian manifolds-the result of smooth geometry and optimization merging into one elegant modern framework-spans many areas of science and engineering, including machine learning, computer vision, signal processing, dynamical systems and scientific computing. This text introduces the differential geometry and Riemannian geometry concepts that will help students and researchers in applied mathematics, computer science and engineering gain a firm mathematical grounding to use these tools confidently in their research. Its charts-last approach will prove more intuitive from an optimizer's viewpoint, and all definitions and theorems are motivated to build time-tested optimization algorithms. Starting from first principles, the text goes on to cover current research on topics including worst-case complexity and geodesic convexity. Readers will appreciate the tricks of the trade for conducting research and for numerical implementations sprinkled throughout the book.


Bifurcations And Chaos In Piecewise-smooth Dynamical Systems: Applications To Power Converters, Relay And Pulse-width Modulated Control Systems, And Human Decision-making Behavior

Bifurcations And Chaos In Piecewise-smooth Dynamical Systems: Applications To Power Converters, Relay And Pulse-width Modulated Control Systems, And Human Decision-making Behavior

Author: Zhanybai T Zhusubaliyev

Publisher: World Scientific

Published: 2003-06-25

Total Pages: 377

ISBN-13: 9814485632

DOWNLOAD EBOOK

Technical problems often lead to differential equations with piecewise-smooth right-hand sides. Problems in mechanical engineering, for instance, violate the requirements of smoothness if they involve collisions, finite clearances, or stick-slip phenomena. Systems of this type can display a large variety of complicated bifurcation scenarios that still lack a detailed description.This book presents some of the fascinating new phenomena that one can observe in piecewise-smooth dynamical systems. The practical significance of these phenomena is demonstrated through a series of well-documented and realistic applications to switching power converters, relay systems, and different types of pulse-width modulated control systems. Other examples are derived from mechanical engineering, digital electronics, and economic business-cycle theory.The topics considered in the book include abrupt transitions associated with modified period-doubling, saddle-node and Hopf bifurcations, the interplay between classical bifurcations and border-collision bifurcations, truncated bifurcation scenarios, period-tripling and -quadrupling bifurcations, multiple-choice bifurcations, new types of direct transitions to chaos, and torus destruction in nonsmooth systems.In spite of its orientation towards engineering problems, the book addresses theoretical and numerical problems in sufficient detail to be of interest to nonlinear scientists in general.