Smart Log Data Analytics

Smart Log Data Analytics

Author: Florian Skopik

Publisher: Springer Nature

Published: 2021-08-28

Total Pages: 210

ISBN-13: 3030744507

DOWNLOAD EBOOK

This book provides insights into smart ways of computer log data analysis, with the goal of spotting adversarial actions. It is organized into 3 major parts with a total of 8 chapters that include a detailed view on existing solutions, as well as novel techniques that go far beyond state of the art. The first part of this book motivates the entire topic and highlights major challenges, trends and design criteria for log data analysis approaches, and further surveys and compares the state of the art. The second part of this book introduces concepts that apply character-based, rather than token-based, approaches and thus work on a more fine-grained level. Furthermore, these solutions were designed for “online use”, not only forensic analysis, but also process new log lines as they arrive in an efficient single pass manner. An advanced method for time series analysis aims at detecting changes in the overall behavior profile of an observed system and spotting trends and periodicities through log analysis. The third part of this book introduces the design of the AMiner, which is an advanced open source component for log data anomaly mining. The AMiner comes with several detectors to spot new events, new parameters, new correlations, new values and unknown value combinations and can run as stand-alone solution or as sensor with connection to a SIEM solution. More advanced detectors help to determines the characteristics of variable parts of log lines, specifically the properties of numerical and categorical fields. Detailed examples throughout this book allow the reader to better understand and apply the introduced techniques with open source software. Step-by-step instructions help to get familiar with the concepts and to better comprehend their inner mechanisms. A log test data set is available as free download and enables the reader to get the system up and running in no time. This book is designed for researchers working in the field of cyber security, and specifically system monitoring, anomaly detection and intrusion detection. The content of this book will be particularly useful for advanced-level students studying computer science, computer technology, and information systems. Forward-thinking practitioners, who would benefit from becoming familiar with the advanced anomaly detection methods, will also be interested in this book.


Data Smart

Data Smart

Author: John W. Foreman

Publisher: John Wiley & Sons

Published: 2013-10-31

Total Pages: 432

ISBN-13: 1118839862

DOWNLOAD EBOOK

Data Science gets thrown around in the press like it'smagic. Major retailers are predicting everything from when theircustomers are pregnant to when they want a new pair of ChuckTaylors. It's a brave new world where seemingly meaningless datacan be transformed into valuable insight to drive smart businessdecisions. But how does one exactly do data science? Do you have to hireone of these priests of the dark arts, the "data scientist," toextract this gold from your data? Nope. Data science is little more than using straight-forward steps toprocess raw data into actionable insight. And in DataSmart, author and data scientist John Foreman will show you howthat's done within the familiar environment of aspreadsheet. Why a spreadsheet? It's comfortable! You get to look at the dataevery step of the way, building confidence as you learn the tricksof the trade. Plus, spreadsheets are a vendor-neutral place tolearn data science without the hype. But don't let the Excel sheets fool you. This is a book forthose serious about learning the analytic techniques, the math andthe magic, behind big data. Each chapter will cover a different technique in aspreadsheet so you can follow along: Mathematical optimization, including non-linear programming andgenetic algorithms Clustering via k-means, spherical k-means, and graphmodularity Data mining in graphs, such as outlier detection Supervised AI through logistic regression, ensemble models, andbag-of-words models Forecasting, seasonal adjustments, and prediction intervalsthrough monte carlo simulation Moving from spreadsheets into the R programming language You get your hands dirty as you work alongside John through eachtechnique. But never fear, the topics are readily applicable andthe author laces humor throughout. You'll even learnwhat a dead squirrel has to do with optimization modeling, whichyou no doubt are dying to know.


Cybersecurity of Digital Service Chains

Cybersecurity of Digital Service Chains

Author: Joanna Kołodziej

Publisher: Springer Nature

Published: 2022

Total Pages: 267

ISBN-13: 3031040368

DOWNLOAD EBOOK

This open access book presents the main scientific results from the H2020 GUARD project. The GUARD project aims at filling the current technological gap between software management paradigms and cybersecurity models, the latter still lacking orchestration and agility to effectively address the dynamicity of the former. This book provides a comprehensive review of the main concepts, architectures, algorithms, and non-technical aspects developed during three years of investigation; the description of the Smart Mobility use case developed at the end of the project gives a practical example of how the GUARD platform and related technologies can be deployed in practical scenarios. We expect the book to be interesting for the broad group of researchers, engineers, and professionals daily experiencing the inadequacy of outdated cybersecurity models for modern computing environments and cyber-physical systems.


Big Data Analytics for Smart Transport and Healthcare Systems

Big Data Analytics for Smart Transport and Healthcare Systems

Author: Saeid Pourroostaei Ardakani

Publisher: Springer Nature

Published: 2024-01-04

Total Pages: 197

ISBN-13: 9819966205

DOWNLOAD EBOOK

This book aims to introduce big data solutions in urban sustainability applications—mainly smart transportation and healthcare systems. It focuses on machine learning techniques and data processing approaches which have the capacity to handle/process huge, live, and complex datasets in real-time transportation and healthcare applications. For this, several state-of-the-art data processing approaches including data pre-processing, classification, regression, and clustering are introduced, tested, and evaluated to highlight their benefits and constraints where data is sensitive, real-time, and/or semi-structured.


Context-Aware Machine Learning and Mobile Data Analytics

Context-Aware Machine Learning and Mobile Data Analytics

Author: Iqbal Sarker

Publisher: Springer Nature

Published: 2022-01-01

Total Pages: 164

ISBN-13: 3030885305

DOWNLOAD EBOOK

This book offers a clear understanding of the concept of context-aware machine learning including an automated rule-based framework within the broad area of data science and analytics, particularly, with the aim of data-driven intelligent decision making. Thus, we have bestowed a comprehensive study on this topic that explores multi-dimensional contexts in machine learning modeling, context discretization with time-series modeling, contextual rule discovery and predictive analytics, recent-pattern or rule-based behavior modeling, and their usefulness in various context-aware intelligent applications and services. The presented machine learning-based techniques can be employed in a wide range of real-world application areas ranging from personalized mobile services to security intelligence, highlighted in the book. As the interpretability of a rule-based system is high, the automation in discovering rules from contextual raw data can make this book more impactful for the application developers as well as researchers. Overall, this book provides a good reference for both academia and industry people in the broad area of data science, machine learning, AI-Driven computing, human-centered computing and personalization, behavioral analytics, IoT and mobile applications, and cybersecurity intelligence.


Big Data Analytics for Internet of Things

Big Data Analytics for Internet of Things

Author: Tausifa Jan Saleem

Publisher: John Wiley & Sons

Published: 2021-03-29

Total Pages: 402

ISBN-13: 1119740770

DOWNLOAD EBOOK

BIG DATA ANALYTICS FOR INTERNET OF THINGS Discover the latest developments in IoT Big Data with a new resource from established and emerging leaders in the field Big Data Analytics for Internet of Things delivers a comprehensive overview of all aspects of big data analytics in Internet of Things (IoT) systems. The book includes discussions of the enabling technologies of IoT data analytics, types of IoT data analytics, challenges in IoT data analytics, demand for IoT data analytics, computing platforms, analytical tools, privacy, and security. The distinguished editors have included resources that address key techniques in the analysis of IoT data. The book demonstrates how to select the appropriate techniques to unearth valuable insights from IoT data and offers novel designs for IoT systems. With an abiding focus on practical strategies with concrete applications for data analysts and IoT professionals, Big Data Analytics for Internet of Things also offers readers: A thorough introduction to the Internet of Things, including IoT architectures, enabling technologies, and applications An exploration of the intersection between the Internet of Things and Big Data, including IoT as a source of Big Data, the unique characteristics of IoT data, etc. A discussion of the IoT data analytics, including the data analytical requirements of IoT data and the types of IoT analytics, including predictive, descriptive, and prescriptive analytics A treatment of machine learning techniques for IoT data analytics Perfect for professionals, industry practitioners, and researchers engaged in big data analytics related to IoT systems, Big Data Analytics for Internet of Things will also earn a place in the libraries of IoT designers and manufacturers interested in facilitating the efficient implementation of data analytics strategies.


Intelligent Data-Analytics for Condition Monitoring

Intelligent Data-Analytics for Condition Monitoring

Author: Hasmat Malik

Publisher: Academic Press

Published: 2021-02-24

Total Pages: 272

ISBN-13: 0323855113

DOWNLOAD EBOOK

Intelligent Data-Analytics for Condition Monitoring: Smart Grid Applications looks at intelligent and meaningful uses of data required for an optimized, efficient engineering processes. In addition, the book provides application perspectives of various deep learning models for the condition monitoring of electrical equipment. With chapters discussing the fundamentals of machine learning and data analytics, the book is divided into two parts, including i) The application of intelligent data analytics in Solar PV fault diagnostics, transformer health monitoring and faults diagnostics, and induction motor faults and ii) Forecasting issues using data analytics which looks at global solar radiation forecasting, wind data forecasting, and more. This reference is useful for all engineers and researchers who need preliminary knowledge on data analytics fundamentals and the working methodologies and architecture of smart grid systems. - Features deep learning methodologies in smart grid deployment and maintenance applications - Includes coding for intelligent data analytics for each application - Covers advanced problems and solutions of smart grids using advance data analytic techniques


Intelligent Sustainable Systems

Intelligent Sustainable Systems

Author: Atulya K. Nagar

Publisher: Springer Nature

Published: 2021-12-16

Total Pages: 821

ISBN-13: 9811663696

DOWNLOAD EBOOK

This book provides insights of World Conference on Smart Trends in Systems, Security and Sustainability (WS4 2021) which is divided into different sections such as Smart IT Infrastructure for Sustainable Society; Smart Management prospective for Sustainable Society; Smart Secure Systems for Next Generation Technologies; Smart Trends for Computational Graphics and Image Modeling; and Smart Trends for Biomedical and Health Informatics. The proceedings is presented in two volumes. The book is helpful for active researchers and practitioners in the field.


A Hands-On Introduction to Data Science

A Hands-On Introduction to Data Science

Author: Chirag Shah

Publisher: Cambridge University Press

Published: 2020-04-02

Total Pages: 459

ISBN-13: 1108472443

DOWNLOAD EBOOK

An introductory textbook offering a low barrier entry to data science; the hands-on approach will appeal to students from a range of disciplines.


Big Data Analytics for Internet of Things

Big Data Analytics for Internet of Things

Author: Tausifa Jan Saleem

Publisher: John Wiley & Sons

Published: 2021-04-20

Total Pages: 402

ISBN-13: 1119740754

DOWNLOAD EBOOK

BIG DATA ANALYTICS FOR INTERNET OF THINGS Discover the latest developments in IoT Big Data with a new resource from established and emerging leaders in the field Big Data Analytics for Internet of Things delivers a comprehensive overview of all aspects of big data analytics in Internet of Things (IoT) systems. The book includes discussions of the enabling technologies of IoT data analytics, types of IoT data analytics, challenges in IoT data analytics, demand for IoT data analytics, computing platforms, analytical tools, privacy, and security. The distinguished editors have included resources that address key techniques in the analysis of IoT data. The book demonstrates how to select the appropriate techniques to unearth valuable insights from IoT data and offers novel designs for IoT systems. With an abiding focus on practical strategies with concrete applications for data analysts and IoT professionals, Big Data Analytics for Internet of Things also offers readers: A thorough introduction to the Internet of Things, including IoT architectures, enabling technologies, and applications An exploration of the intersection between the Internet of Things and Big Data, including IoT as a source of Big Data, the unique characteristics of IoT data, etc. A discussion of the IoT data analytics, including the data analytical requirements of IoT data and the types of IoT analytics, including predictive, descriptive, and prescriptive analytics A treatment of machine learning techniques for IoT data analytics Perfect for professionals, industry practitioners, and researchers engaged in big data analytics related to IoT systems, Big Data Analytics for Internet of Things will also earn a place in the libraries of IoT designers and manufacturers interested in facilitating the efficient implementation of data analytics strategies.