Vehicle-to-Grid: Linking Electric Vehicles to the Smart Grid provides an integrated treatment of smart grid using electric vehicles by exploring the connection between the stationary grid and PEV power storage. Plug-in electric and hybrid vehicles (PEVs) have the potential to provide substantial storage to a city's grid, a key component in mitigating intermittency issues of power sources. However the batteries of these vehicles also need to be charged at times for when their users need them. As a result, V2G (vehicle-to-grid) is becoming an important issue in the future grid. Topics covered include: - the impact of PEVs and V2G on smart grid and renewable energy systems - distributed energy resource with PEV battery energy storage in the smart grid - power conversion technology in smart grid and PEVs - power control and monitoring of smart grid with PEVs - PEV charging technologies and V2G on distributed energy resources - utility interfaces - economic, social and environmental dimensions of PEVs in the smart grid
This comprehensive reference text discusses simulation with case studies and realworld applications related to energy system models, the large-scale integration of renewable energy systems, electric vehicles, and energy storage systems. The text covers analysis and modeling of the large-scale integration of renewable energy systems, electric vehicles, and energy storage systems. It further discusses economic aspects useful for policy makers and industrial professionals. It covers important topics, including smart grids architectures, wide-area situational awareness (WASA), energy management systems (EMS), demand response (DR), smart grid standardization exertions, virtual power plants, battery degradation modeling, optimization approaches in modeling, and smart metering infrastructure. The book: Discusses the analysis and modeling of the large-scale integration of renewable energy systems, electric vehicles, and energy storage systems Covers issues and challenges encountered in the large-scale integration of electric vehicles, energy storage systems and renewable energy systems into future smart grid design Provides simulation with case studies and real-world applications related to energy system models, electric vehicles, and energy storage systems Discusses the integration of large renewable energy systems, with the presence of a large number of electric vehicles and storage devices/systems Discussing concepts of smart grids, together with the deployment of electric vehicles, energy storage systems and renewable energy systems, this text will be useful as a reference text for graduate students and academic researchers in the fields of electrical engineering, electronics and communication engineering, renewable energy, and clean technologies. It further discusses topics, including electric grid infrastructure, architecture, interfacing, standardization, protocols, security, reliability, communication, and optimal control.
Smart Energy Grid Engineering provides in-depth detail on the various important engineering challenges of smart energy grid design and operation by focusing on advanced methods and practices for designing different components and their integration within the grid. Governments around the world are investing heavily in smart energy grids to ensure optimum energy use and supply, enable better planning for outage responses and recovery, and facilitate the integration of heterogeneous technologies such as renewable energy systems, electrical vehicle networks, and smart homes around the grid. By looking at case studies and best practices that illustrate how to implement smart energy grid infrastructures and analyze the technical details involved in tackling emerging challenges, this valuable reference considers the important engineering aspects of design and implementation, energy generation, utilization and energy conservation, intelligent control and monitoring data analysis security, and asset integrity. - Includes detailed support to integrate systems for smart grid infrastructures - Features global case studies outlining design components and their integration within the grid - Provides examples and best practices from industry that will assist in the migration to smart grids
A guide to a multi-disciplinary approach that includes perspectives from noted experts in the energy and utilities fields Advances in Energy Systems offers a stellar collection of articles selected from the acclaimed journal Wiley Interdisciplinary Review: Energy and Environment. The journalcovers all aspects of energy policy, science and technology, environmental and climate change. The book covers a wide range of relevant issues related to the systemic changes for large-scale integration of renewable energy as part of the on-going energy transition. The book addresses smart energy systems technologies, flexibility measures, recent changes in the marketplace and current policies. With contributions from a list of internationally renowned experts, the book deals with the hot topic of systems integration for future energy systems and energy transition. This important resource: Contains contributions from noted experts in the field Covers a broad range of topics on the topic of renewable energy Explores the technical impacts of high shares of wind and solar power Offers a review of international smart-grid policies Includes information on wireless power transmission Presents an authoritative view of micro-grids Contains a wealth of other relevant topics Written forenergy planners, energy market professionals and technology developers, Advances in Energy Systems is an essential guide with contributions from an international panel of experts that addresses the most recent smart energy technologies.
This comprehensive reference text discusses simulation with case studies and realworld applications related to energy system models, the large-scale integration of renewable energy systems, electric vehicles, and energy storage systems. The text covers analysis and modeling of the large-scale integration of renewable energy systems, electric vehicles, and energy storage systems. It further discusses economic aspects useful for policy makers and industrial professionals. It covers important topics, including smart grids architectures, wide-area situational awareness (WASA), energy management systems (EMS), demand response (DR), smart grid standardization exertions, virtual power plants, battery degradation modeling, optimization approaches in modeling, and smart metering infrastructure. The book: Discusses the analysis and modeling of the large-scale integration of renewable energy systems, electric vehicles, and energy storage systems Covers issues and challenges encountered in the large-scale integration of electric vehicles, energy storage systems and renewable energy systems into future smart grid design Provides simulation with case studies and real-world applications related to energy system models, electric vehicles, and energy storage systems Discusses the integration of large renewable energy systems, with the presence of a large number of electric vehicles and storage devices/systems Discussing concepts of smart grids, together with the deployment of electric vehicles, energy storage systems and renewable energy systems, this text will be useful as a reference text for graduate students and academic researchers in the fields of electrical engineering, electronics and communication engineering, renewable energy, and clean technologies. It further discusses topics, including electric grid infrastructure, architecture, interfacing, standardization, protocols, security, reliability, communication, and optimal control.
Smart Power Distribution Systems: Control, Communication, and Optimization explains how diverse technologies work to build and maintain smart grids around the globe. Yang, Yang and Li present the most recent advances in the control, communication and optimization of smart grids and provide unique insight into power system control, sensing and communication, and optimization technologies. The book covers control challenges for renewable energy and smart grids, communication in smart power systems, and optimization challenges in smart power system operations. Each area discussed focuses on the scientific innovations relating to the approaches, methods and algorithmic solutions presented. Readers will develop sound knowledge and gain insights into the integration of renewable energy generation in smart power distribution systems. - Presents the latest technological advances in electric power distribution networks, with a particular focus on methodologies, approaches and algorithms - Provides insights into the most recent research and developments from expert contributors from across the world - Presents a clear and methodical structure that guides the reader through discussion and analysis, providing unique insights and sound knowledge along the way
"This reference book covers the latest innovations and trends within smart grid and microgrid development, detailing benefits, challenges, and opportunities, that will help readers to fully understand the current opportunities that smart grids and microgrids present around the world"--
Smart grid (SG), also called intelligent grid, is a modern improvement of the traditional power grid that will revolutionize the way electricity is produced, delivered, and consumed. Studying key concepts such as advanced metering infrastructure, distribution management systems, and energy management systems will support the design of a cost-effective, reliable, and efficient supply system, and will create a real-time bidirectional communication means and information exchange between the consumer and the grid operator of electric power. Optimizing and Measuring Smart Grid Operation and Control is a critical reference source that presents recent research on the operation, control, and optimization of smart grids. Covering topics that include phase measurement units, smart metering, and synchrophasor technologies, this book examines all aspects of modern smart grid measurement and control. It is designed for engineers, researchers, academicians, and students.
Electric power systems are being transformed from older grid systems to smart grids across the globe. The goals of this transition are to address today’s electric power issues, which include reducing carbon footprints, finding alternate sources of decaying fossil fuels, eradicating losses that occur in the current available systems, and introducing the latest information and communication technologies (ICT) for electric grids. The development of smart grid technology is advancing dramatically along with and in reaction to the continued growth of renewable energy technologies (especially wind and solar power), the growing popularity of electric vehicles, and the continuing huge demand for electricity. Smart Grid Systems: Modeling and Control advances the basic understanding of smart grids and focuses on recent technological advancements in the field. This book provides a comprehensive discussion from a number of experts and practitioners and describes the challenges and the future scope of the technologies related to smart grid. Key features: provides an overview of the smart grid, with its needs, benefits, challenges, existing structure, and possible future technologies discusses solar photovoltaic (PV) system modeling and control along with battery storage, an integral part of smart grids discusses control strategies for renewable energy systems, including solar PV, wind, and hybrid systems describes the inverter topologies adopted for integrating renewable power covers the basics of the energy storage system and the need for micro grids describes forecast techniques for renewable energy systems presents the basics and structure of the energy management system in smart grids, including advanced metering, various communication protocols, and the cyber security challenges explores electric vehicle technology and its interaction with smart grids
Power systems worldwide are going through a paradigm shift from centralized generation to distributed generation. This book presents the SYNDEM (i.e., synchronized and democratized) grid architecture and its technical routes to harmonize the integration of renewable energy sources, electric vehicles, storage systems, and flexible loads, with the synchronization mechanism of synchronous machines, to enable autonomous operation of power systems, and to promote energy freedom. This is a game changer for the grid. It is the sort of breakthrough — like the touch screen in smart phones — that helps to push an industry from one era to the next, as reported by Keith Schneider, a New York Times correspondent since 1982. This book contains an introductory chapter and additional 24 chapters in five parts: Theoretical Framework, First-Generation VSM (virtual synchronous machines), Second-Generation VSM, Third-Generation VSM, and Case Studies. Most of the chapters include experimental results. As the first book of its kind for power electronics-enabled autonomous power systems, it • introduces a holistic architecture applicable to both large and small power systems, including aircraft power systems, ship power systems, microgrids, and supergrids • provides latest research to address the unprecedented challenges faced by power systems and to enhance grid stability, reliability, security, resiliency, and sustainability • demonstrates how future power systems achieve harmonious interaction, prevent local faults from cascading into wide-area blackouts, and operate autonomously with minimized cyber-attacks • highlights the significance of the SYNDEM concept for power systems and beyond Power Electronics-Enabled Autonomous Power Systems is an excellent book for researchers, engineers, and students involved in energy and power systems, electrical and control engineering, and power electronics. The SYNDEM theoretical framework chapter is also suitable for policy makers, legislators, entrepreneurs, commissioners of utility commissions, energy and environmental agency staff, utility personnel, investors, consultants, and attorneys.