This book documents recent advances in the field of modeling, simulation, control, security and reliability of Cyber- Physical Systems (CPS) in power grids. The aim of this book is to help the reader gain insights into working of CPSs and understand their potential in transforming the power grids of tomorrow. This book will be useful for all those who are interested in design of cyber-physical systems, be they students or researchers in power systems, CPS modeling software developers, technical marketing professionals and business policy-makers.
Cyber-Physical Power System State Estimation updates classic state estimation tools to enable real-time operations and optimize reliability in modern electric power systems. The work introduces and contextualizes the core concepts and classic approaches to state estimation modeling. It builds on these classic approaches with a suite of data-driven models and non-synchronized measurement tools to reflect current measurement trends required by increasingly more sophisticated grids. Chapters outline core definitions, concepts and the network analysis procedures involved in the real-time operation of EPS. Specific sections introduce power flow problem in EPS, highlighting network component modeling and power flow equations for state estimation before addressing quasi static state estimation in electrical power systems using Weighted Least Squares (WLS) classical and alternatives formulations. Particularities of the state estimation process in distribution systems are also considered. Finally, the work goes on to address observability analysis, measurement redundancy and the processing of gross errors through the analysis of WLS static state estimator residuals. - Develops advanced approaches to smart grid real-time monitoring through quasi-static model state estimation and non-synchronized measurements system models - Presents a novel, extended optimization, physics-based model which identifies and corrects for measurement error presently egregiously discounted in classic models - Demonstrates how to embed cyber-physical security into smart grids for real-time monitoring - Introduces new approaches to calculate power flow in distribution systems and for estimating distribution system states - Incorporates machine-learning based approaches to complement the state estimation process, including pattern recognition-based solutions, principal component analysis and support vector machines
In an uncertain and complex environment, to ensure secure and stable operations of large-scale power systems is one of the biggest challenges that power engineers have to address today. Traditionally, power system operations and decision-making in controls are based on power system computations of physical models describing the behavior of power systems. Largely, physical models are constructed according to some assumptions and simplifications, and such is the case with power system models. However, the complexity of power system stability problems, along with the system's inherent uncertainties and nonlinearities, can result in models that are impractical or inaccurate. This calls for adaptive or deep-learning algorithms to significantly improve current control schemes that solve decision and control problems. Cyberphysical Infrastructures in Power Systems: Architectures and Vulnerabilities provides an extensive overview of CPS concepts and infrastructures in power systems with a focus on the current state-of-the-art research in this field. Detailed classifications are pursued highlighting existing solutions, problems, and developments in this area. Gathers the theoretical preliminaries and fundamental issues related to CPS architectures. Provides coherent results in adopting control and communication methodologies to critically examine problems in various units within smart power systems and microgrid systems. Presents advanced analysis under cyberphysical attacks and develops resilient control strategies to guarantee safe operation at various power levels.
"This book focuses upon the recent advances in the realization of Artificial Intelligence-based approaches towards affecting secure Cyber-Physical Systems. It features contributions pertaining to this multidisciplinary paradigm, in particular, in its application to building sustainable space by investigating state-of-art research issues, applications and achievements in the field of Computational Intelligence Paradigms for Cyber-Physical Systems"--
In an increasingly connected world, the term cyber-physical networks has been coined to refer to the communication among devices that is turning smart devices into smart (cooperating) systems. The distinctive feature of such systems is that significant advantage can be obtained if its interconnected, complex nature is exploited. Several challenges arising in cyber-physical networks can be stated as optimization problems. Examples are estimation, decision, learning and control applications. In cyber-physical networks, the goal is to design algorithms, based on the exchange of information among the processors, that take advantage of the aggregated computational power. Distributed Optimization for Smart Cyber-Physical Networks provides a comprehensive overview of the most common approaches used to design distributed optimization algorithms, together with the theoretical analysis of the main schemes in their basic version. It identifies and formalizes classes of problem set-ups that arise in motivating application scenarios. For each set-up, in order to give the main tools for analysis, tailored distributed algorithms in simplified cases are reviewed. Extensions and generalizations of the basic schemes are also discussed at the end of each chapter. Distributed Optimization for Smart Cyber-Physical Networks provides the reader with an accessible overview of the current research and gives important pointers towards new developments. It is an excellent starting point for research and students unfamiliar with the topic.
Smart Cyber Physical Systems: Advances, Challenges and Opportunities ISBN: 9780367337889 Cyber Physical Systems (CPS) are the new generation of collaborative computational entities, with a prime focus on integration of the physical world and cyber space. Through a feedback mechanism, the system adapts itself to new conditions in real time. The scope of this book includes research experience by experts in CPS infrastructure systems, incorporating sustainability by embedding computing and communication in day-to-day applications. CPS, integrated with Blockchain, Artificial Intelligence, Internet of Things, Big Data, Cloud Computing and Communication, lay a foundation for the fourth industrial revolution, Industry 4.0. This book will be of immense use to practitioners in industries with a focus on autonomous and adaptive configuration, and on optimization, leading to increased agility, elasticity and cost effectiveness. The contributors of this book include renowned academics, industry practitioners and researchers. It offers a rigorous introduction to the theoretical foundations, techniques and practical solutions, through case studies. Building CPS with effective communication, control, intelligence and security is discussed in terms of societal and research perspectives. The objective of this book is to provide a forum for researchers and practitioners to exchange ideas and to achieve progress in CPS by highlighting applications, advances and research challenges. It is highly recommended to be used as a reference book for graduate and post-graduate level programmes in universities, with a focus on research in computer science-related courses.
Cyber-physical systems (CPS) involve deeply integrated, tightly coupled computational and physical components. These systems, spanning multiple scientific and technological domains, are highly complex and pose several fundamental challenges. They are also critically important to society’s advancement and security. The design and deployment of the adaptable, reliable CPS of tomorrow requires the development of a basic science foundation, synergistically drawing on various branches of engineering, mathematics, computer science, and domain specific knowledge. This book brings together 19 invited papers presented at the Workshop on Control of Cyber-Physical Systems, hosted by the Department of Electrical & Computer Engineering at The Johns Hopkins University in March 2013. It highlights the central role of control theory and systems thinking in developing the theory of CPS, in addressing the challenges of cyber-trust and cyber-security, and in advancing emerging cyber-physical applications ranging from smart grids to smart buildings, cars and robotic systems.
"This reference book covers the latest innovations and trends within smart grid and microgrid development, detailing benefits, challenges, and opportunities, that will help readers to fully understand the current opportunities that smart grids and microgrids present around the world"--
This new work explores the growth of information and communication technologies with an emphasis on cyber-physical systems and security management of these systems. This volume discusses and analyzes the various effective practical applications of CPS, which involves the integration of the physical process with embedded computation and network monitoring along with feedback loops from physical systems. The authors identify the best set of applications and discuss the drawbacks of existing systems. The book provides a broad outlook on the applications of cyber-physical systems along with case studies and examples in healthcare, automotive electronics, industrial automation, environment monitoring, agriculture, and applications in civil and mechanical sectors. Topics include using an energy management system in smart grids, implementing an intelligent traffic management system, warehouse tracking and monitoring, medical cyber-physical systems security, remote healthcare monitoring, and more.
Provides the foundations and principles needed for addressing the various challenges of developing smart cities Smart cities are emerging as a priority for research and development across the world. They open up significant opportunities in several areas, such as economic growth, health, wellness, energy efficiency, and transportation, to promote the sustainable development of cities. This book provides the basics of smart cities, and it examines the possible future trends of this technology. Smart Cities: Foundations, Principles, and Applications provides a systems science perspective in presenting the foundations and principles that span multiple disciplines for the development of smart cities. Divided into three parts—foundations, principles, and applications—Smart Cities addresses the various challenges and opportunities of creating smart cities and all that they have to offer. It also covers smart city theory modeling and simulation, and examines case studies of existing smart cities from all around the world. In addition, the book: Addresses how to develop a smart city and how to present the state of the art and practice of them all over the world Focuses on the foundations and principles needed for advancing the science, engineering, and technology of smart cities—including system design, system verification, real-time control and adaptation, Internet of Things, and test beds Covers applications of smart cities as they relate to smart transportation/connected vehicle (CV) and Intelligent Transportation Systems (ITS) for improved mobility, safety, and environmental protection Smart Cities: Foundations, Principles, and Applications is a welcome reference for the many researchers and professionals working on the development of smart cities and smart city-related industries.