With the extraordinary growth of Unmanned Aerial Vehicles (UAV) in research, military, and commercial contexts, there has been a need for a reference that provides a comprehensive look at the latest research in the area. Filling this void, Smart Autonomous Aircraft: Flight Control and Planning for UAV introduces the advanced methods of flight contr
With the emergence of smart technology and automated systems in today’s world, artificial intelligence (AI) is being incorporated into an array of professions. The aviation and aerospace industry, specifically, is a field that has seen the successful implementation of early stages of automation in daily flight operations through flight management systems and autopilot. However, the effectiveness of aviation systems and the provision of flight safety still depend primarily upon the reliability of aviation specialists and human decision making. The Handbook of Research on Artificial Intelligence Applications in the Aviation and Aerospace Industries is a pivotal reference source that explores best practices for AI implementation in aviation to enhance security and the ability to learn, improve, and predict. While highlighting topics such as computer-aided design, automated systems, and human factors, this publication explores the enhancement of global aviation security as well as the methods of modern information systems in the aeronautics industry. This book is ideally designed for pilots, scientists, engineers, aviation operators, air crash investigators, teachers, academicians, researchers, and students seeking current research on the application of AI in the field of aviation.
Unmanned Aircraft Systems (UAS) are an integral part of the US national critical infrastructure. They must be protected from hostile intent or use to the same level as any other military or commercial asset involved in US national security. However, from the Spratly Islands to Djibouti to heartland America, the expanding Chinese Unmanned Aircraft Systems (UAS / Drone) industry has outpaced the US technologically and numerically on all fronts: military, commercial, and recreational. Both countries found that there were large information security gaps in unmanned systems that could be exploited on the international cyber-security stage. Many of those gaps remain today and are direct threats to US advanced Air Assets if not mitigated upfront by UAS designers and manufacturers. The authors contend that US military / commercial developers of UAS hardware and software must perform cyber risk assessments and mitigations prior to delivery of UAS systems to stay internationally competitive and secure. The authors have endeavored to bring a breadth and quality of information to the reader that is unparalleled in the unclassified sphere. This book will fully immerse and engage the reader in the cyber-security considerations of this rapidly emerging technology that we know as unmanned aircraft systems (UAS). Topics covered include National Airspace (NAS) policy issues, information security, UAS vulnerabilities in key systems (Sense and Avoid / SCADA), collision avoidance systems, stealth design, intelligence, surveillance and reconnaissance (ISR) platforms; weapons systems security; electronic warfare considerations; data-links, jamming operational vulnerabilities and still-emerging political scenarios that affect US military / commercial decisions.
Comprehensively covers emerging aerospace technologies Advanced UAV aerodynamics, flight stability and control: Novel concepts, theory and applications presents emerging aerospace technologies in the rapidly growing field of unmanned aircraft engineering. Leading scientists, researchers and inventors describe the findings and innovations accomplished in current research programs and industry applications throughout the world. Topics included cover a wide range of new aerodynamics concepts and their applications for real world fixed-wing (airplanes), rotary wing (helicopter) and quad-rotor aircraft. The book begins with two introductory chapters that address fundamental principles of aerodynamics and flight stability and form a knowledge base for the student of Aerospace Engineering. The book then covers aerodynamics of fixed wing, rotary wing and hybrid unmanned aircraft, before introducing aspects of aircraft flight stability and control. Key features: Sound technical level and inclusion of high-quality experimental and numerical data. Direct application of the aerodynamic technologies and flight stability and control principles described in the book in the development of real-world novel unmanned aircraft concepts. Written by world-class academics, engineers, researchers and inventors from prestigious institutions and industry. The book provides up-to-date information in the field of Aerospace Engineering for university students and lecturers, aerodynamics researchers, aerospace engineers, aircraft designers and manufacturers.
Autonomous vehicles (AVs) have been used in military operations for more than 60 years, with torpedoes, cruise missiles, satellites, and target drones being early examples.1 They have also been widely used in the civilian sector-for example, in the disposal of explosives, for work and measurement in radioactive environments, by various offshore industries for both creating and maintaining undersea facilities, for atmospheric and undersea research, and by industry in automated and robotic manufacturing. Recent military experiences with AVs have consistently demonstrated their value in a wide range of missions, and anticipated developments of AVs hold promise for increasingly significant roles in future naval operations. Advances in AV capabilities are enabled (and limited) by progress in the technologies of computing and robotics, navigation, communications and networking, power sources and propulsion, and materials. Autonomous Vehicles in Support of Naval Operations is a forward-looking discussion of the naval operational environment and vision for the Navy and Marine Corps and of naval mission needs and potential applications and limitations of AVs. This report considers the potential of AVs for naval operations, operational needs and technology issues, and opportunities for improved operations.
Intelligent Autonomy of UAVs: Advanced Missions and Future Use provides an approach to the formulation of the fundamental task typical to any mission and provides guidelines of how this task can be solved by different generic robotic problems. As such, this book aims to provide a systems engineering approach to UAV projects, discovering the real problems that need to be resolved independently of the application. After an introduction to the rapidly evolving field of aerial robotics, the book presents topics such as autonomy, mission analysis, human-UAV teams, homogeneous and heterogeneous UAV teams, and finally, UAV-UGV teams. It then covers generic robotic problems such as orienteering and coverage. The book next introduces deployment, patrolling, and foraging, while the last part of the book tackles an important application: aerial search, tracking, and surveillance. This book is meant for both scientists and practitioners. For practitioners, it presents existing solutions that are categorized according to various missions: surveillance and reconnaissance, 3D mapping, urban monitoring, precision agriculture, forestry, disaster assessment and monitoring, security, industrial plant inspection, etc. For scientists, it provides an overview of generic robotic problems such as coverage and orienteering; deployment, patrolling and foraging; search, tracking, and surveillance. The design and analysis of algorithms raise a unique combination of questions from many fields, including robotics, operational research, control theory, and computer science.
Winner of the 2019 William E. Colby Award "The book I had been waiting for. I can't recommend it highly enough." —Bill Gates The era of autonomous weapons has arrived. Today around the globe, at least thirty nations have weapons that can search for and destroy enemy targets all on their own. Paul Scharre, a leading expert in next-generation warfare, describes these and other high tech weapons systems—from Israel’s Harpy drone to the American submarine-hunting robot ship Sea Hunter—and examines the legal and ethical issues surrounding their use. “A smart primer to what’s to come in warfare” (Bruce Schneier), Army of None engages military history, global policy, and cutting-edge science to explore the implications of giving weapons the freedom to make life and death decisions. A former soldier himself, Scharre argues that we must embrace technology where it can make war more precise and humane, but when the choice is life or death, there is no replacement for the human heart.
Newcome traces the family tree of unmanned aircraft all the way back to their roots as aerial torpedoes, which were the equivalent of todays cruise missiles. He discusses the work of leading aerospace pioneers whose efforts in the area of unmanned aviation have largely been ignored by history.
Dr. Greg Zacharias, former Chief Scientist of the United States Air Force (2015-18), explores next steps in autonomous systems (AS) development, fielding, and training. Rapid advances in AS development and artificial intelligence (AI) research will change how we think about machines, whether they are individual vehicle platforms or networked enterprises. The payoff will be considerable, affording the US military significant protection for aviators, greater effectiveness in employment, and unlimited opportunities for novel and disruptive concepts of operations. Autonomous Horizons: The Way Forward identifies issues and makes recommendations for the Air Force to take full advantage of this transformational technology.
Multi-robot systems are a major research topic in robotics. Designing, testing, and deploying aerial robots in the real world is a possibility due to recent technological advances. This book explores different aspects of cooperation in multiagent systems. It covers the team approach as well as deterministic decision-making. It also presents distributed receding horizon control, as well as conflict resolution, artificial potentials, and symbolic planning. The book also covers association with limited communications, as well as genetic algorithms and game theory reasoning. Multiagent decision-making and algorithms for optimal planning are also covered along with case studies. Key features: Provides a comprehensive introduction to multi-robot systems planning and task allocation Explores multi-robot aerial planning; flight planning; orienteering and coverage; and deployment, patrolling, and foraging Includes real-world case studies Treats different aspects of cooperation in multiagent systems Both scientists and practitioners in the field of robotics will find this text valuable.