Investigation at Transonic Speeds of the Loading Over a 45 Degree Sweptback Wing Having an Aspect Ratio of 3, a Taper Ratio of 0.2, and NACA 65A004 Airfoil Sections

Investigation at Transonic Speeds of the Loading Over a 45 Degree Sweptback Wing Having an Aspect Ratio of 3, a Taper Ratio of 0.2, and NACA 65A004 Airfoil Sections

Author: Jack F. Runckel

Publisher:

Published: 1956

Total Pages: 104

ISBN-13:

DOWNLOAD EBOOK

An investigation at transonic speeds of the loading over a 45 degree sweptback wing having an aspect ratio of 3, a taper ratio of 0.2, and NACA 65A004 airfoil sections has been conducted in the Langley16-foot transonic tunnel. Pressure measurements on the wing-body combination were obtained at angles of attack from 0 to 26 degrees at Mach numbers from 0.80 to 0.98 and from 0 to about 12 degrees at Mach numbers from 1.00 to 1.05. Reynolds number, based on the wing mean aerodynamic chord, varied from 7,000,000 to 8,500,000 over the test Mach number range.


Investigation at Transonic Speeds of the Loading Over a 45 Degree Sweptback Wing Having an Aspect Ratio of 3, a Taper Ratio of 0.2, and Naca 65a004 Airfoil Sections

Investigation at Transonic Speeds of the Loading Over a 45 Degree Sweptback Wing Having an Aspect Ratio of 3, a Taper Ratio of 0.2, and Naca 65a004 Airfoil Sections

Author: JACK F. RUNCKEL

Publisher:

Published: 1961

Total Pages: 1

ISBN-13:

DOWNLOAD EBOOK

An investigation at transonic speeds of the loading over a 45 degree sweptback wing having an aspect ratio of 3, a taper ratio of 0.2, and NACA 65A004 airfoil sections was conducted in the Langley 16-foot transonic tunnel. Pressure measurements on the wing-body combi ation were obtained at angles of attack from 0 degrees to 26 degrees at Mach numbers from 0.80 to 0.98 and at angles of attack from 0 degrees to about 12 degrees at Mach numbers from 1.00 to 1.05. Reynolds number, based on the wing mean aerodynamic c ord varied from 7 times 10 to the 6th po er to 8.5 times 10 to the 6th power over the test Mach number range. Results of the investigation indicate that a highly swept shock originates at the juncture of the wing leading edge and the body at moderate angles of attack and has a large influence on the loading over the inboard wing sections. (Author).


Investigation at Transonic Speeds of Loading Over a 30 Deg Sweptback Wing of Aspect Ratio 3, Taper Ratio 0.2, and NACA 65A004 Airfoil Section Mounted on a Body

Investigation at Transonic Speeds of Loading Over a 30 Deg Sweptback Wing of Aspect Ratio 3, Taper Ratio 0.2, and NACA 65A004 Airfoil Section Mounted on a Body

Author: Donald D. Arabian

Publisher:

Published: 1960

Total Pages: 88

ISBN-13:

DOWNLOAD EBOOK

The aerodynamic load characteristics of a wing-body combination were determined experimentally at Mach numbers from 0.80 to 1.03 for angles of attack up to 26 degrees. Two wings, both with 30 degrees sweep of the quarter-chord line, taper ratio of 0.2, aspect ratio of 3, and thickness of 4 percent chord, but of different types of construction, were tested. One wing was of solid steel and the other was of plastic with an inner steel core ...


Aerodynamic Characteristics of a Wing with Quarter-chord Line Swept Back 45 Degrees, Aspect Ratio 4, Taper Ratio 0.3, and NACA 65A006 Airfoil Section

Aerodynamic Characteristics of a Wing with Quarter-chord Line Swept Back 45 Degrees, Aspect Ratio 4, Taper Ratio 0.3, and NACA 65A006 Airfoil Section

Author: Boyd C. Myers

Publisher:

Published: 1949

Total Pages: 36

ISBN-13:

DOWNLOAD EBOOK

This paper presents the results of the investigation of a wing-alone and wing-fuselage configuration employing a wing with the quarter-chord line swept back 45 degrees, with aspect ratio 4, taper ratio 0.3, and an NACA 65A006 airfoil section. Lift, drag, pitching moment, and root bending moment were obtained for these configurations. In addition, effective downwash angles and dynamic-pressure characteristics in the region of a probable tail location were also obtained for these configurations and are presented for a range of tail heights at one tail length. In order to expedite the publishing of these data, only a brief analysis is included.


Transonic Wind-tunnel Investigation of the Effects of Sweepback and Thickness Ratio on the Wing Loads of a Wing-body Combination of Aspect Ratio 4 and Taper Ratio 0.6

Transonic Wind-tunnel Investigation of the Effects of Sweepback and Thickness Ratio on the Wing Loads of a Wing-body Combination of Aspect Ratio 4 and Taper Ratio 0.6

Author: Robert J. Platt

Publisher:

Published: 1955

Total Pages: 50

ISBN-13:

DOWNLOAD EBOOK

A transonic investigation of the effects of sweepback and thickness ratio on the wing loads of a wing in the presence of a body has been made in the Langley 8-foot transonic pressure tunnel. The tests covered wings with a thickness ratio of 6 percent for sweepback angles of 0, 25, and 45 degrees and a thickness ratio of 4 percent for an unswept wing.


An Investigation at Transonic Speeds of the Effects of Thickness Ratio and of Thickened Root Sections on the Aerodynamic Characteristics of Wings with 47© Sweepback, Aspect Ratio 3.5, and Taper Ratio 0.2 in the Slotted Test Section of the Langley 8-foot High-speed Tunnel

An Investigation at Transonic Speeds of the Effects of Thickness Ratio and of Thickened Root Sections on the Aerodynamic Characteristics of Wings with 47© Sweepback, Aspect Ratio 3.5, and Taper Ratio 0.2 in the Slotted Test Section of the Langley 8-foot High-speed Tunnel

Author: Ralph P. Bielat

Publisher:

Published: 1951

Total Pages: 44

ISBN-13:

DOWNLOAD EBOOK

Four wing-body combinations of the same plan form (47 degree sweep, 3.5 aspect ratio, and 0.2 taper ratio) were compared at transonic speeds in the Langley 8-foot high-speed tunnel. Three wings were 4, 6, and 9 percent thick; the fourth was 6 percent thick but, on the inner 0.4 span, tapered to 12-percent thickness at the roots.


Aerodynamics, Aeronautics, and Flight Mechanics

Aerodynamics, Aeronautics, and Flight Mechanics

Author: Barnes W. McCormick

Publisher: John Wiley & Sons

Published: 1994-09-28

Total Pages: 677

ISBN-13: 0471575062

DOWNLOAD EBOOK

A New Edition of the Most Effective Text/Reference in the Field! Aerodynamics, Aeronautics, and Flight Mechanics, Second Edition Barnes W. McCormick, Pennsylvania State University 57506-2 When the first edition of Aerodynamics, Aeronautics, and Flight Mechanics was published, it quickly became one of the most important teaching and reference tools in the field. Not only did generations of students learn from it, they continue to use it on the job-the first edition remains one of the most well-thumbed guides you'll find in an airplane company. Now this classic text/reference is available in a bold new edition. All new material and the interweaving of the computer throughout make the Second Edition even more practical and current than before! A New Edition as Complete and Applied as the First Both analytical and applied in nature, Aerodynamics, Aeronautics, and Flight Mechanics presents all necessary derivations to understand basic principles and then applies this material to specific examples. You'll find complete coverage of the full range of topics, from aerodynamics to propulsion to performance to stability and control. Plus, the new Second Edition boasts the same careful integration of concepts that was an acclaimed feature of the previous edition. For example, Chapters 9, 10, and 11 give a fully integrated presentation of static, dynamic, and automatic stability and control. These three chapters form the basis of a complete course on stability and control. New Features You'll Find in the Second Edition * A new chapter on helicopter and V/STOL aircraft- introduces a phase of aerodynamics not covered in most current texts * Even more material than the previous edition, including coverage of stealth airplanes and delta wings * Extensive use of the computer throughout- each chapter now contains several computer exercises * A computer disk with programs written by the author is available


Lateral-control Investigation of Flap-type Controls on a Wing with Quarter-chord Line Sweptback 35©, Aspect Ratio 4, Taper Ratio 0.6, and NACA 65A006 Airfoil Section

Lateral-control Investigation of Flap-type Controls on a Wing with Quarter-chord Line Sweptback 35©, Aspect Ratio 4, Taper Ratio 0.6, and NACA 65A006 Airfoil Section

Author: Robert F. Thompson

Publisher:

Published: 1950

Total Pages: 28

ISBN-13:

DOWNLOAD EBOOK

This paper presents the results of an investigation to determine the control-effectiveness characteristics of 30-percent-chord flap-type control surfaces of various spans on a semispan wing-fuselage model. The wing of the mode had 35 degrees of sweepback of the quarter chord, an aspect ratio of 4.0, a taper ratio of 0.6, and an NACA 65A006 airfoil section parallel to the free stream. Lift, rolling moments, and pitching moments were obtained for several angle of attack throughout a small range of control-surface deflections. Most of the data are presented as control-effectiveness parameters which show their variation with Mach number.