Reviews the most recent methods for testing small cracks in a variety of materials, providing detailed quantitative information on necessary procedures for data acquisition. Emphasizes the characterization of small, three-dimensional fatigue cracks, initiated either naturally or artificially. The ei
The theme of the 15th International Acoustic Emission Symposium (IAES15) was set as 'practicality for life-extension and maintenance of plants and structures'. Special emphasis was placed on the review of acoustic emission (AE) research and applications in the 20th century and its future in the 21st century.The technique for monitoring defects and abnormal vibrations due to machine failures is vitally important for the safety of structures in a modern society. AE, as a passive, rather than an active NDT method, has drawn much attention because of its applicability to on-stream surveillance of structures. One important point is its capability to acquire data very simply but with high sensitivity so that the development of a non-contact sensing technique is particularly important. A quantitative method to evaluate structural integrity and remaining life from the detected AE signals is strongly required. Quantitative analysis, based on inverse procedures, has provided a certain solution, but has not been utilized widely enough in structures due to its complexity. Its applicability is limited partly because the accuracy of solutions depends on noise levels and partly because the phenomenon is usually non-reproducible. AE is expected to be a next-generation technique not only to monitor conditions but also for the repair of damaged structures, combined with an active-adaptive technique using a 'solid state actuator'. 'Smart Materials and Structures' are known in this respect. AE is considered to be a very promising technique, together with such sensing techniques as optical fiber, shape memory alloy and electro-rheological fluid. Thus, AE can play a very important roll in monitoring, evaluating and repairing structures.In this workshop, a limited number of invited papers are presented for technical discussion to review the achievements of AE research and applications in the 20th century. The proceedings are entitled Acoustic Emission - Beyond the Millennium to celebrate the new millennium, and stepping forward to a new era. The authors and topics of these review papers were selected by the editorial board.
Fatigue failure is a multi-stage process. It begins with the initiation of cracks, and with continued cyclic loading the cracks propagate, finally leading to the rupture of a component or specimen. The demarcation between the above stages is not well-defined. Depending upon the scale of interest, the variation may span three orders of magnitude. For example, to a material scientist an initiated crack may be of the order of a micron, whereas for an engineer it can be of the order of a millimetre. It is not surprising therefore to see that investigation of the fatigue process has followed different paths depending upon the scale of phenomenon under investigation. Interest in the study of fatigue failure increased with the advent of industrial ization. Because of the urgent need to design against fatigue failure, early investiga tors focused on prototype testing and proposed failure criteria similar to design formulae. Thus, a methodology developed whereby the fatigue theories were proposed based on experimental observations, albeit at times with limited scope. This type of phenomenological approach progressed rapidly during the past four decades as closed-loop testing machines became available.