Analysis of Poverty Data by Small Area Estimation

Analysis of Poverty Data by Small Area Estimation

Author: Monica Pratesi

Publisher: John Wiley & Sons

Published: 2016-02-23

Total Pages: 485

ISBN-13: 1118815017

DOWNLOAD EBOOK

A comprehensive guide to implementing SAE methods for poverty studies and poverty mapping There is an increasingly urgent demand for poverty and living conditions data, in relation to local areas and/or subpopulations. Policy makers and stakeholders need indicators and maps of poverty and living conditions in order to formulate and implement policies, (re)distribute resources, and measure the effect of local policy actions. Small Area Estimation (SAE) plays a crucial role in producing statistically sound estimates for poverty mapping. This book offers a comprehensive source of information regarding the use of SAE methods adapted to these distinctive features of poverty data derived from surveys and administrative archives. The book covers the definition of poverty indicators, data collection and integration methods, the impact of sampling design, weighting and variance estimation, the issue of SAE modelling and robustness, the spatio-temporal modelling of poverty, and the SAE of the distribution function of income and inequalities. Examples of data analyses and applications are provided, and the book is supported by a website describing scripts written in SAS or R software, which accompany the majority of the presented methods. Key features: Presents a comprehensive review of SAE methods for poverty mapping Demonstrates the applications of SAE methods using real-life case studies Offers guidance on the use of routines and choice of websites from which to download them Analysis of Poverty Data by Small Area Estimation offers an introduction to advanced techniques from both a practical and a methodological perspective, and will prove an invaluable resource for researchers actively engaged in organizing, managing and conducting studies on poverty.


Introduction to Small Area Estimation Techniques

Introduction to Small Area Estimation Techniques

Author: Asian Development Bank

Publisher: Asian Development Bank

Published: 2020-05-01

Total Pages: 152

ISBN-13: 9292622234

DOWNLOAD EBOOK

This guide to small area estimation aims to help users compile more reliable granular or disaggregated data in cost-effective ways. It explains small area estimation techniques with examples of how the easily accessible R analytical platform can be used to implement them, particularly to estimate indicators on poverty, employment, and health outcomes. The guide is intended for staff of national statistics offices and for other development practitioners. It aims to help them to develop and implement targeted socioeconomic policies to ensure that the vulnerable segments of societies are not left behind, and to monitor progress toward the Sustainable Development Goals.


Missing Data and Small-Area Estimation

Missing Data and Small-Area Estimation

Author: Nicholas T. Longford

Publisher: Springer Science & Business Media

Published: 2005-11-24

Total Pages: 357

ISBN-13: 1846281954

DOWNLOAD EBOOK

This book evolved from lectures, courses and workshops on missing data and small-area estimation that I presented during my tenure as the ?rst C- pion Fellow (2000–2002). For the Fellowship I proposed these two topics as areas in which the academic statistics could contribute to the development of government statistics, in exchange for access to the operational details and background that would inform the direction and sharpen the focus of a- demic research. After a few years of involvement, I have come to realise that the separation of ‘academic’ and ‘industrial’ statistics is not well suited to either party, and their integration is the key to progress in both branches. Most of the work on this monograph was done while I was a visiting l- turer at Massey University, Palmerston North, New Zealand. The hospitality and stimulating academic environment of their Institute of Information S- ence and Technology is gratefully acknowledged. I could not name all those who commented on my lecture notes and on the presentations themselves; apart from them, I want to thank the organisers and silent attendees of all the events, and, with a modicum of reluctance, the ‘grey ?gures’ who kept inquiring whether I was any nearer the completion of whatever stage I had been foolish enough to attach a date.


Spatial Microsimulation: A Reference Guide for Users

Spatial Microsimulation: A Reference Guide for Users

Author: Robert Tanton

Publisher: Springer Science & Business Media

Published: 2012-11-13

Total Pages: 272

ISBN-13: 9400746237

DOWNLOAD EBOOK

This book is a practical guide on how to design, create and validate a spatial microsimulation model. These models are becoming more popular as academics and policy makers recognise the value of place in research and policy making. Recent spatial microsimulation models have been used to analyse health and social disadvantage for small areas; and to look at the effect of policy change for small areas. This provides a powerful analysis tool for researchers and policy makers. This book covers preparing the data for spatial microsimulation; a number of methods for both static and dynamic spatial microsimulation models; validation of the models to ensure the outputs are reasonable; and the future of spatial microsimulation. The book will be an essential handbook for any researcher or policy maker looking to design and create a spatial microsimulation model. This book will also be useful to those policy makers who are commissioning a spatial microsimulation model, or looking to commission work using a spatial microsimulation model, as it provides information on the different methods in a non-technical way.


Small Area Estimation

Small Area Estimation

Author: J. N. K. Rao

Publisher: John Wiley & Sons

Published: 2005-02-25

Total Pages: 340

ISBN-13: 0471431621

DOWNLOAD EBOOK

An accessible introduction to indirect estimation methods, both traditional and model-based. Readers will also find the latest methods for measuring the variability of the estimates as well as the techniques for model validation. Uses a basic area-level linear model to illustrate the methods Presents the various extensions including binary response data through generalized linear models and time series data through linear models that combine cross-sectional and time series features Provides recent applications of SAE including several in U.S. Federal programs Offers a comprehensive discussion of the design issues that impact SAE


Small Area Estimation and Microsimulation Modeling

Small Area Estimation and Microsimulation Modeling

Author: Azizur Rahman

Publisher: CRC Press

Published: 2016-11-30

Total Pages: 456

ISBN-13: 1315354942

DOWNLOAD EBOOK

Small Area Estimation and Microsimulation Modeling is the first practical handbook that comprehensively presents modern statistical SAE methods in the framework of ultramodern spatial microsimulation modeling while providing the novel approach of creating synthetic spatial microdata. Along with describing the necessary theories and their advantages and limitations, the authors illustrate the practical application of the techniques to a large number of substantive problems, including how to build up models, organize and link data, create synthetic microdata, conduct analyses, yield informative tables and graphs, and evaluate how the findings effectively support the decision making processes in government and non-government organizations. Features Covers both theoretical and applied aspects for real-world comparative research and regional statistics production Thoroughly explains how microsimulation modeling technology can be constructed using available datasets for reliable small area statistics Provides SAS codes that allow readers to utilize these latest technologies in their own work. This book is designed for advanced graduate students, academics, professionals and applied practitioners who are generally interested in small area estimation and/or microsimulation modeling and dealing with vital issues in social and behavioural sciences, applied economics and policy analysis, government and/or social statistics, health sciences, business, psychology, environmental and agriculture modeling, computational statistics and data simulation, spatial statistics, transport and urban planning, and geospatial modeling. Dr Azizur Rahman is a Senior Lecturer in Statistics and convenor of the Graduate Program in Applied Statistics at the Charles Sturt University, and an Adjunct Associate Professor of Public Health and Biostatistics at the University of Canberra. His research encompasses small area estimation, applied economics, microsimulation modeling, Bayesian inference and public health. He has more than 60 scholarly publications including two books. Dr. Rahman’s research is funded by the Australian Federal and State Governments, and he serves on a range of editorial boards including the International Journal of Microsimulation (IJM). Professor Ann Harding, AO is an Emeritus Professor of Applied Economics and Social Policy at the National Centre for Social and Economic Modelling (NATSEM) of the University of Canberra. She was the founder and inaugural Director of this world class Research Centre for more than sixteen years, and also a co-founder of the International Microsimulation Association (IMA) and served as the inaugural elected president of IMA from 2004 to 2011. She is a fellow of the Academy of the Social Sciences in Australia. She has more than 300 publications including several books in microsimulation modeling.


Small Area Estimation

Small Area Estimation

Author: J. N. K. Rao

Publisher: John Wiley & Sons

Published: 2015-08-10

Total Pages: 476

ISBN-13: 111873579X

DOWNLOAD EBOOK

Praise for the First Edition "This pioneering work, in which Rao provides a comprehensive and up-to-date treatment of small area estimation, will become a classic...I believe that it has the potential to turn small area estimation...into a larger area of importance to both researchers and practitioners." —Journal of the American Statistical Association Written by two experts in the field, Small Area Estimation, Second Edition provides a comprehensive and up-to-date account of the methods and theory of small area estimation (SAE), particularly indirect estimation based on explicit small area linking models. The model-based approach to small area estimation offers several advantages including increased precision, the derivation of "optimal" estimates and associated measures of variability under an assumed model, and the validation of models from the sample data. Emphasizing real data throughout, the Second Edition maintains a self-contained account of crucial theoretical and methodological developments in the field of SAE. The new edition provides extensive accounts of new and updated research, which often involves complex theory to handle model misspecifications and other complexities. Including information on survey design issues and traditional methods employing indirect estimates based on implicit linking models, Small Area Estimation, Second Edition also features: Additional sections describing the use of R code data sets for readers to use when replicating applications Numerous examples of SAE applications throughout each chapter, including recent applications in U.S. Federal programs New topical coverage on extended design issues, synthetic estimation, further refinements and solutions to the Fay-Herriot area level model, basic unit level models, and spatial and time series models A discussion of the advantages and limitations of various SAE methods for model selection from data as well as comparisons of estimates derived from models to reliable values obtained from external sources, such as previous census or administrative data Small Area Estimation, Second Edition is an excellent reference for practicing statisticians and survey methodologists as well as practitioners interested in learning SAE methods. The Second Edition is also an ideal textbook for graduate-level courses in SAE and reliable small area statistics.


Spatial Econometric Methods in Agricultural Economics Using R

Spatial Econometric Methods in Agricultural Economics Using R

Author: Paolo Postiglione

Publisher: CRC Press

Published: 2021-12-22

Total Pages: 287

ISBN-13: 1498766838

DOWNLOAD EBOOK

Modern tools, such as GIS and remote sensing, are increasingly used in the monitoring of agricultural resources. The developments in GIS technology offer growing opportunities to agricultural economics analysts dealing with large and detailed spatial databases, allowing them to combine spatial information from different sources and to produce different models. The availability of these valuable sources of information makes the advanced models suggested in the spatial statistic and econometric literature applicable to agricultural economics. This book aims at supporting stakeholders to design spatial surveys for agricultural data and/or to analyse the geographically collected data. This book attempts to describe the main typology of agricultural data and the most appropriate methods for the analysis, together with a detailed description of the available data sources and their collection methods. Topics such as spatial interpolation, point patterns, spatial autocorrelation, survey data analysis, small area estimation, regional data modelling, and spatial econometrics techniques are covered jointly with issues arising from the integration of several data types. The theory of spatial methods is complemented by real and/or simulated examples implemented through the open-source software R.


GIS and Machine Learning for Small Area Classifications in Developing Countries

GIS and Machine Learning for Small Area Classifications in Developing Countries

Author: Adegbola Ojo

Publisher: CRC Press

Published: 2020-12-29

Total Pages: 269

ISBN-13: 1000289370

DOWNLOAD EBOOK

Since the emergence of contemporary area classifications, population geography has witnessed a renaissance in the area of policy related spatial analysis. Area classifications subsume geodemographic systems which often use data mining techniques and machine learning algorithms to simplify large and complex bodies of information about people and the places in which they live, work and undertake other social activities. Outputs developed from the grouping of small geographical areas on the basis of multi- dimensional data have proved beneficial particularly for decision-making in the commercial sectors of a vast number of countries in the northern hemisphere. This book argues that small area classifications offer countries in the Global South a distinct opportunity to address human population policy related challenges in novel ways using area-based initiatives and evidence-based methods. This book exposes researchers, practitioners, and students to small area segmentation techniques for understanding, interpreting, and visualizing the configuration, dynamics, and correlates of development policy challenges at small spatial scales. It presents strategic and operational responses to these challenges in cost effective ways. Using two developing countries as case studies, the book connects new transdisciplinary ways of thinking about social and spatial inequalities from a scientific perspective with GIS and Data Science. This offers all stakeholders a framework for engaging in practical dialogue on development policy within urban and rural settings, based on real-world examples. Features: The first book to address the huge potential of small area segmentation for sustainable development, combining explanations of concepts, a range of techniques, and current applications. Includes case studies focused on core challenges that confront developing countries and provides thorough analytical appraisal of issues that resonate with audiences from the Global South. Combines GIS and machine learning methods for studying interrelated disciplines such as Demography, Urban Science, Sociology, Statistics, Sustainable Development and Public Policy. Uses a multi-method approach and analytical techniques of primary and secondary data. Embraces a balanced, chronological, and well sequenced presentation of information, which is very practical for readers.