Sixteenth International Congress on Mathematical Physics

Sixteenth International Congress on Mathematical Physics

Author: Pavel Exner

Publisher: World Scientific

Published: 2010

Total Pages: 709

ISBN-13: 981430462X

DOWNLOAD EBOOK

The International Congress on Mathematical Physics is the flagship conference in this exciting field. Convening every three years, it gives a survey on the progress achieved in all branches of mathematical physics. It also provides a superb platform to discuss challenges and new ideas. The present volume collects material from the XVIth ICMP which was held in Prague, August 2009, and features most of the plenary lectures and invited lectures in topical sessions as well as information on other parts of the congress program. This volume provides a broad coverage of the field of mathematical physics, from dominantly mathematical subjects to particle physics, condensed matter, and application of mathematical physics methods in various areas such as astrophysics and ecology, amongst others.


XVIIth International Congress on Mathematical Physics

XVIIth International Congress on Mathematical Physics

Author: Arne Jensen

Publisher: World Scientific

Published: 2014

Total Pages: 743

ISBN-13: 9814449245

DOWNLOAD EBOOK

This is an in-depth study of not just about Tan Kah-kee, but also the making of a legend through his deeds, self-sacrifices, fortitude and foresight. This revised edition sheds new light on his political agonies in Mao's China over campaigns against capitalists and intellectuals.


Xivth International Congress On Mathematical Physics

Xivth International Congress On Mathematical Physics

Author: Jean-claude Zambrini

Publisher: World Scientific

Published: 2006-03-07

Total Pages: 718

ISBN-13: 9814480762

DOWNLOAD EBOOK

In 2003 the XIV International Congress on Mathematical Physics (ICMP) was held in Lisbon with more than 500 participants. Twelve plenary talks were given in various fields of Mathematical Physics: E Carlen «On the relation between the Master equation and the Boltzmann Equation in Kinetic Theory»; A Chenciner «Symmetries and “simple” solutions of the classical n-body problem»; M J Esteban «Relativistic models in atomic and molecular physics»; K Fredenhagen «Locally covariant quantum field theory»; K Gawedzki «Simple models of turbulent transport»; I Krichever «Algebraic versus Liouville integrability of the soliton systems»; R V Moody «Long-range order and diffraction in mathematical quasicrystals»; S Smirnov «Critical percolation and conformal invariance»; J P Solovej «The energy of charged matter»; V Schomerus «Strings through the microscope»; C Villani «Entropy production and convergence to equilibrium for the Boltzmann equation»; D Voiculescu «Aspects of free probability».The book collects as well carefully selected invited Session Talks in: Dynamical Systems, Integrable Systems and Random Matrix Theory, Condensed Matter Physics, Equilibrium Statistical Mechanics, Quantum Field Theory, Operator Algebras and Quantum Information, String and M Theory, Fluid Dynamics and Nonlinear PDE, General Relativity, Nonequilibrium Statistical Mechanics, Quantum Mechanics and Spectral Theory, Path Integrals and Stochastic Analysis.


Clifford Algebras and their Applications in Mathematical Physics

Clifford Algebras and their Applications in Mathematical Physics

Author: Rafał Abłamowicz

Publisher: Springer Science & Business Media

Published: 2000

Total Pages: 500

ISBN-13: 9780817641825

DOWNLOAD EBOOK

The first part of a two-volume set concerning the field of Clifford (geometric) algebra, this work consists of thematically organized chapters that provide a broad overview of cutting-edge topics in mathematical physics and the physical applications of Clifford algebras. algebras and their applications in physics. Algebraic geometry, cohomology, non-communicative spaces, q-deformations and the related quantum groups, and projective geometry provide the basis for algebraic topics covered. Physical applications and extensions of physical theories such as the theory of quaternionic spin, a projective theory of hadron transformation laws, and electron scattering are also presented, showing the broad applicability of Clifford geometric algebras in solving physical problems. Treatment of the structure theory of quantum Clifford algebras, the connection to logic, group representations, and computational techniques including symbolic calculations and theorem proving rounds out the presentation.


Clifford Algebras and their Applications in Mathematical Physics

Clifford Algebras and their Applications in Mathematical Physics

Author: Rafal Ablamowicz

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 470

ISBN-13: 1461213681

DOWNLOAD EBOOK

The plausible relativistic physical variables describing a spinning, charged and massive particle are, besides the charge itself, its Minkowski (four) po sition X, its relativistic linear (four) momentum P and also its so-called Lorentz (four) angular momentum E # 0, the latter forming four trans lation invariant part of its total angular (four) momentum M. Expressing these variables in terms of Poincare covariant real valued functions defined on an extended relativistic phase space [2, 7J means that the mutual Pois son bracket relations among the total angular momentum functions Mab and the linear momentum functions pa have to represent the commutation relations of the Poincare algebra. On any such an extended relativistic phase space, as shown by Zakrzewski [2, 7], the (natural?) Poisson bracket relations (1. 1) imply that for the splitting of the total angular momentum into its orbital and its spin part (1. 2) one necessarily obtains (1. 3) On the other hand it is always possible to shift (translate) the commuting (see (1. 1)) four position xa by a four vector ~Xa (1. 4) so that the total angular four momentum splits instead into a new orbital and a new (Pauli-Lubanski) spin part (1. 5) in such a way that (1. 6) However, as proved by Zakrzewski [2, 7J, the so-defined new shifted four a position functions X must fulfill the following Poisson bracket relations: (1.


New Trends in Mathematical Physics

New Trends in Mathematical Physics

Author: Vladas Sidoravicius

Publisher: Springer Science & Business Media

Published: 2009-08-31

Total Pages: 886

ISBN-13: 9048128102

DOWNLOAD EBOOK

This book collects selected papers written by invited and plenary speakers of the 15th International Congress on Mathematical Physics (ICMP) in the aftermath of the conference. In extensive review articles and expository texts as well as advanced research articles the world leading experts present the state of the art in modern mathematical physics. New mathematical concepts and ideas are introduced by prominent mathematicalphysicists and mathematicians, covering among others the fields of Dynamical Systems, Operator Algebras, Partial Differential Equations, Probability Theory, Random Matrices, Condensed Matter Physics, Statistical Mechanics, General Relativity, Quantum Mechanics, Quantum Field Theory, Quantum Information and String Theory. All together the contributions in this book give a panoramic view of the latest developments in mathematical physics. They will help readers with a general interest in mathematical physics to get an update on the most recent developments in their field, and give a broad overview on actual and future research directions in this fascinating and rapidly expanding area.


Differential Equations and Mathematical Physics

Differential Equations and Mathematical Physics

Author: Rudi Weikard

Publisher: American Mathematical Soc.

Published: 2000

Total Pages: 491

ISBN-13: 0821821571

DOWNLOAD EBOOK

This volume contains the proceedings of the 1999 International Conference on Differential Equations and Mathematical Physics. The contributions selected for this volume represent some of the most important presentations by scholars from around the world on developments in this area of research. The papers cover topics in the general area of linear and nonlinear differential equations and their relation to mathematical physics, such as multiparticle Schrödinger operators, stability of matter, relativity theory, fluid dynamics, spectral and scattering theory including inverse problems. Titles in this series are co-published with International Press, Cambridge, MA.


Categories in Algebra, Geometry and Mathematical Physics

Categories in Algebra, Geometry and Mathematical Physics

Author: Alexei Davydov

Publisher: American Mathematical Soc.

Published: 2007

Total Pages: 482

ISBN-13: 0821839705

DOWNLOAD EBOOK

Category theory has become the universal language of modern mathematics. This book is a collection of articles applying methods of category theory to the areas of algebra, geometry, and mathematical physics. Among others, this book contains articles on higher categories and their applications and on homotopy theoretic methods. The reader can learn about the exciting new interactions of category theory with very traditional mathematical disciplines.


Prospects in Mathematical Physics

Prospects in Mathematical Physics

Author: José C. Mourão

Publisher: American Mathematical Soc.

Published: 2007

Total Pages: 258

ISBN-13: 0821842706

DOWNLOAD EBOOK

This book includes papers presented at the Young Researchers Symposium of the 14th International Congress on Mathematical Physics, held in July 2003, in Lisbon, Portugal. The goal of thes book is to illustrate various promising areas of mathematical physics in a way accessible to researchers at the beginning of their career. Two of the three laureates of the Henri Poincare Prizes, Huzihiro Araki and Elliott Lieb, also contributed to this volume. The book provides a good survey of some active areas of research in modern mathematical physics.