The notion of single valued neutrosophic sets is a generalization of fuzzy sets, intuitionistic fuzzy sets. We apply the concept of single valued neutrosophic sets, an instance of neutrosophic sets, to graphs. We introduce certain types of single valued neutrosophic graphs (SVNG) and investigate some of their properties with proofs and examples.
This book addresses single-valued neutrosophic graphs and their applications. In addition, it introduces readers to a number of central concepts, including certain types of single-valued neutrosophic graphs, energy of single-valued neutrosophic graphs, bipolar single-valued neutrosophic planar graphs, isomorphism of intuitionistic single-valued neutrosophic soft graphs, and single-valued neutrosophic soft rough graphs. Divided into eight chapters, the book seeks to remedy the lack of a mathematical approach to indeterminate and inconsistent information. Chap. 1 presents a concise review of single-valued neutrosophic sets, while Chap. 2 explains the notion of neutrosophic graph structures and explores selected properties of neutrosophic graph structures. Chap. 3 discusses specific bipolar neutrosophic graphs. Chap. 4 highlights the concept of interval-valued neutrosophic graphs, while Chap. 5 presents certain notions concerning interval-valued neutrosophic graph structures. Chap. 6 addresses the concepts of rough neutrosophic digraphs and neutrosophic rough digraphs. Chap. 7 focuses on the concepts of neutrosophic soft graphs and intuitionistic neutrosophic soft graphs, before Chap. 8 rounds out the book by considering neutrosophic soft rough graphs.
Studies to neutrosophic graphs happens to be not only innovative and interesting, but gives a new dimension to graph theory. The classic coloring of edge problem happens to give various results. Neutrosophic tree will certainly find lots of applications in data mining when certain levels of indeterminacy is involved in the problem. Several open problems are suggested.
The concept of neutrosophic sets can be utilized as a mathematical tool to deal with imprecise and unspecified information. In this paper, we apply the concept of single-valued neutrosophic sets to graphs. We introduce the notion of single-valued neutrosophic graphs, and present some fundamental operations on single-valued neutrosophic graphs. We explore some interesting properties of single-valued neutrosophic graphs by level graphs. We highlight some flaws in the definitions of Broumi et al. [10] and Shah-Hussain [18]. We also present an application of single-valued neutrosophic graphs in social network.
This paper derived single-valued neutrosophic graphs from single-valued neutrosophic hypergraphs via strong equivalence relation. We show that any weak single-valued neutrosophic graph is a derived single-valued neutrosophic graph and any linear weak single-valued neutrosophic tree is an extendable linear single-valued neutrosophic tree.
In this research paper, we present certain types of single-valued neutrosophic graphs, including edge regular single-valued neutrosophic graphs and totally edge regular single-valued neutrosophic graphs. We investigate some of their related properties. We describe an application of single-valued neutrosophic graph in decision making process and present the procedure of our method that is used in our application in an algorithm.
Fuzzy graph theory is a useful and well-known tool to model and solve many real-life optimization problems. Since real-life problems are often uncertain due to inconsistent and indeterminate information, it is very hard for an expert to model those problems using a fuzzy graph. A neutrosophic graph can deal with the uncertainty associated with the inconsistent and indeterminate information of any real-world problem, where fuzzy graphs may fail to reveal satisfactory results.
This paper considers wireless sensor (hyper)networks by single–valued neutrosophic (hyper)graphs. It tries to extend the notion of single– valued neutrosophic graphs to single–valued neutrosophic hypergraphs and it is derived single–valued neutrosophic graphs from single–valued neutrosophic hypergraphs via positive equivalence relation.
Graph theory is a specific concept that has numerous applications throughout many industries. Despite the advancement of this technique, graph theory can still yield ambiguous and imprecise results. In order to cut down on these indeterminate factors, neutrosophic logic has emerged as an applicable solution that is gaining significant attention in solving many real-life decision-making problems that involve uncertainty, impreciseness, vagueness, incompleteness, inconsistency, and indeterminacy. However, empirical research on this specific graph set is lacking. Neutrosophic Graph Theory and Algorithms is a collection of innovative research on the methods and applications of neutrosophic sets and logic within various fields including systems analysis, economics, and transportation. While highlighting topics including linear programming, decision-making methods, and homomorphism, this book is ideally designed for programmers, researchers, data scientists, mathematicians, designers, educators, researchers, academicians, and students seeking current research on the various methods and applications of graph theory.
In this paper, we introduced a new concept of single valued neutrosophic graph (SVNG) known as constant single valued neutrosophic graph (CSVNG). Basically, SVNG is a generalization of intuitionistic fuzzy graph (IFG). More specifically, we described and explored somegraph theoretic ideas related to the introduced concepts of CSVNG. An application of CSVNG in a Wi-Fi network system is discussed and a comparison of CSVNG with constant IFG is established showing the worth of the proposed work. Further, several terms like constant function and totally constant function are investigated in the frame-work of CSVNG and their characteristics are studied.