The topics range from single molecule experiments in quantum optics and solid-state physics to analogous investigations in physical chemistry and biophysics.
Spectroscopy and Dynamics of Single Molecules: Methods and Applications reviews the most recent developments in spectroscopic methods and applications. Spectroscopic techniques are the chief experimental methods for testing theoretical models and research in this area plays an important role in stimulating new theoretical developments in physical chemistry. This book provides an authoritative insight into the latest advances in the field, highlighting new techniques, current applications, and potential future developments An ideal reference for chemists and physicists alike, Spectroscopy and Dynamics of Single Molecules: Methods and Applications is a useful guide for all those working in the research, design, or application of spectroscopic tools and techniques across a wide range of fields. - Includes the latest research on ultrafast vibrational and electronic dynamics, nonlinear spectroscopies, and single-molecule methods - Makes the content accessible to researchers in chemistry, biophysics, and chemical physics through a rigorous multi-disciplinary approach - Provides content edited by a world-renowned chemist with more than 30 years of experience in research and instruction
This handbook describes experimental techniques to monitor and manipulate individual biomolecules, including fluorescence detection, atomic force microscopy, and optical and magnetic trapping. It includes single-molecule studies of physical properties of biomolecules such as folding, polymer physics of protein and DNA, enzymology and biochemistry, single molecules in the membrane, and single-molecule techniques in living cells.
Surface plasmon resonance (SPR) plays a dominant role in real-time interaction sensing of biomolecular binding events, this book provides a total system description including optics, fluidics and sensor surfaces for a wide researcher audience.
This collection discusses various micro/nanodevice design and fabrication for single-biomolecules detection. It will be an ideal reference text for graduate students and professionals in diverse subject areas including materials science, biomedical engineering, chemical engineering, mechanical engineering, and nanoscience. This book- Discusses techniques of single-biomolecule detection, their advantages, limitations, and applications. Covers comprehensively several electrochemical detection techniques. Provides single-molecule separation, sensing, imaging, sequencing, and analysis in detail. Examines different types of cantilever-based biomolecule sensing, and its limitations. Single Biomolecule Detection and Analysis covers single-biomolecule detection and characterization using micro/nanotechnologies and micro/nanofluidic devices, electrical and magnetic detection technologies, microscopy and spectroscopy techniques, single biomolecule optical, and nanopore devices. The text covers key important biosensors-based detection, stochastic optical reconstruction microscopy-based detection, electrochemical detection, metabolic engineering of animal cells, single-molecule intracellular delivery and tracking, terahertz spectroscopy-based detection, total internal reflection fluorescence (TIFR) detection, and Fluorescence Correlation Spectroscopy (FCS) detection. The text will be useful for graduate students and professionals in diverse subject areas including materials science, biomedical engineering, chemical engineering, mechanical engineering, and nanoscience. Discussing chemical process, physical process, separation, sensing, imaging, sequencing, and analysis of single-molecule detection, this text will be useful for graduate students and professionals in diverse subject areas including materials science, biomedical engineering, chemical engineering, mechanical engineering, and nanoscience. It covers microscopy and spectroscopy techniques for single-biomolecule detection, analysis, and their biomedical engineering applications.
This first volume in the new Springer Series on Fluorescence brings together fundamental and applied research from this highly interdisciplinary and field, ranging from chemistry and physics to biology and medicine. Special attention is given to supramolecular systems, sensor applications, confocal microscopy and protein-protein interactions. This carefully edited collection of articles is an invaluable tool for practitioners and novices.
In this first comprehensive resource to cover the application of single molecule techniques to biological measurements, the pioneers in the field show how to both set up and interpret a single molecule experiment. Following an introduction to single molecule measurements and enzymology, the expert authors consider molecular motors and mechanical properties before moving on to the applications themselves. Detailed discussions of studies on protein enzymes, ribozymes and nucleic acids are also included.
This is the first book-length treatment of both the theoretical background to fluorescence correlation spectroscopy (FCS) and a variety of applications in various fields of science. The high spatial and temporal resolution of FCS has made it a powerful tool for the analysis of molecular interactions and kinetics, transport properties due to thermal motion, and flow. It contains an essential contribution from Nobel Prize winner M. Eigen, who is credited with inventing FCS.
Single molecule tools have begun to revolutionize the molecular sciences, from biophysics to chemistry to cell biology. They hold the promise to be able to directly observe previously unseen molecular heterogeneities, quantitatively dissect complex reaction kinetics, ultimately miniaturize enzyme assays, image components of spatially distributed samples, probe the mechanical properties of single molecules in their native environment, and "just look at the thing" as anticipated by the visionary Richard Feynman already half a century ago. Single Molecule Tools, Part B: Super-Resolution, Particle Tracking, Multiparameter, and Force Based Methods captures a snapshot of this vibrant, rapidly expanding field, presenting articles from pioneers in the field intended to guide both the newcomer and the expert through the intricacies of getting single molecule tools. - Includes time-tested core methods and new innovations applicable to any researcher employing single molecule tools - Methods included are useful to both established researchers and newcomers to the field - Relevant background and reference information given for procedures can be used as a guide to developing protocols in a number of disciplines
Geared towards research scientists in structural and molecular biology, biochemistry, and biophysics, this manual will be useful to all who are interested in observing, manipulating and elucidating the molecular mechanisms and discrete properties of macromolecules.