Single-Molecule Image Analysis
Author: Christian Franke
Publisher: Frontiers Media SA
Published: 2022-12-15
Total Pages: 152
ISBN-13: 2889760340
DOWNLOAD EBOOKRead and Download eBook Full
Author: Christian Franke
Publisher: Frontiers Media SA
Published: 2022-12-15
Total Pages: 152
ISBN-13: 2889760340
DOWNLOAD EBOOKAuthor: R. Rigler
Publisher: Springer Science & Business Media
Published: 2012-12-06
Total Pages: 375
ISBN-13: 3642565441
DOWNLOAD EBOOKThe topics range from single molecule experiments in quantum optics and solid-state physics to analogous investigations in physical chemistry and biophysics.
Author: Markus Sauer
Publisher: John Wiley & Sons
Published: 2010-12-23
Total Pages: 425
ISBN-13: 3527633529
DOWNLOAD EBOOKProviding much-needed information on fluorescence spectroscopy and microscopy, this ready reference covers detection techniques, data registration, and the use of spectroscopic tools, as well as new techniques for improving the resolution of optical microscopy below the resolution gap. Starting with the basic principles, the book goes on to treat fluorophores and labeling, single-molecule fluorescence spectroscopy and enzymatics, as well as excited state energy transfer, and super-resolution fluorescence imaging. Examples show how each technique can help in obtaining detailed and refined information from individual molecular systems.
Author: Peter Hinterdorfer
Publisher: Springer Science & Business Media
Published: 2009-12-24
Total Pages: 634
ISBN-13: 0387764976
DOWNLOAD EBOOKThis handbook describes experimental techniques to monitor and manipulate individual biomolecules, including fluorescence detection, atomic force microscopy, and optical and magnetic trapping. It includes single-molecule studies of physical properties of biomolecules such as folding, polymer physics of protein and DNA, enzymology and biochemistry, single molecules in the membrane, and single-molecule techniques in living cells.
Author: Tim Salditt
Publisher: Springer Nature
Published: 2020-06-09
Total Pages: 634
ISBN-13: 3030344134
DOWNLOAD EBOOKThis open access book, edited and authored by a team of world-leading researchers, provides a broad overview of advanced photonic methods for nanoscale visualization, as well as describing a range of fascinating in-depth studies. Introductory chapters cover the most relevant physics and basic methods that young researchers need to master in order to work effectively in the field of nanoscale photonic imaging, from physical first principles, to instrumentation, to mathematical foundations of imaging and data analysis. Subsequent chapters demonstrate how these cutting edge methods are applied to a variety of systems, including complex fluids and biomolecular systems, for visualizing their structure and dynamics, in space and on timescales extending over many orders of magnitude down to the femtosecond range. Progress in nanoscale photonic imaging in Göttingen has been the sum total of more than a decade of work by a wide range of scientists and mathematicians across disciplines, working together in a vibrant collaboration of a kind rarely matched. This volume presents the highlights of their research achievements and serves as a record of the unique and remarkable constellation of contributors, as well as looking ahead at the future prospects in this field. It will serve not only as a useful reference for experienced researchers but also as a valuable point of entry for newcomers.
Author: Alberto Diaspro
Publisher: Springer Science & Business Media
Published: 2010-11-25
Total Pages: 252
ISBN-13: 3642151752
DOWNLOAD EBOOKIn the last decade, fluorescence microscopy has evolved from a classical “retrospective” microscopy approach into an advanced imaging technique that allows the observation of cellular activities in living cells with increased resolution and dimensions. A bright new future has arrived as the nano era has placed a whole new array of tools in the hands of biophysicists who are keen to go deeper into the intricacies of how biological systems work. Following an introduction to the complex world of optical microscopy, this book covers topics such as the concept of white confocal, nonlinear optical microscopy, fluctuation spectroscopies, site-specific labeling of proteins in living cells, imaging molecular physiology using nanosensors, measuring molecular dynamics, muscle braking and stem cell differentiation.
Author:
Publisher: Academic Press
Published: 2020-05-29
Total Pages: 432
ISBN-13: 0128211520
DOWNLOAD EBOOKChemical Tools for Imaging, Manipulating, and Tracking Biological Systems: Diverse Methods for Optical Imaging and Conjugation, Volume 639, the latest release in the Methods in Enzymology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. Chapters in this new release include Fluorogenic detection of protein aggregates in live cells using the AggTag method, Synthesis and Application of Ratiometric Probes for Hydrogen Peroxide Detection, Chemical Tools for Multicolor Protein FRET with Tryptophan, Fluorescing Isofunctional Ribonucleosides for Adenosine Deaminase Activity and Inhibition, Temporal profiling establishes a dynamic S-palmitoylation cycle, Solvation-guided design of fluorescent probes for discrimination of amyloids, and much more. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Methods in Enzymology series - Includes the latest information on retinoid signaling pathways
Author: Alessandra Cambi
Publisher: CRC Press
Published: 2014-10-27
Total Pages: 514
ISBN-13: 1482209896
DOWNLOAD EBOOKCell Membrane Nanodomains: From Biochemistry to Nanoscopy describes recent advances in our understanding of membrane organization, with a particular focus on the cutting-edge imaging techniques that are making these new discoveries possible. With contributions from pioneers in the field, the book explores areas where the application of these novel techniques reveals new concepts in biology. It assembles a collection of works where the integration of membrane biology and microscopy emphasizes the interdisciplinary nature of this exciting field. Beginning with a broad description of membrane organization, including seminal work on lipid partitioning in model systems and the roles of proteins in membrane organization, the book examines how lipids and membrane compartmentalization can regulate protein function and signal transduction. It then focuses on recent advances in imaging techniques and tools that foster further advances in our understanding of signaling nanoplatforms. The coverage includes several diffraction-limited imaging techniques that allow for measurements of protein distribution/clustering and membrane curvature in living cells, new fluorescent proteins, novel Laurdan analyses, and the toolbox of labeling possibilities with organic dyes. Since superresolution optical techniques have been crucial to advancing our understanding of cellular structure and protein behavior, the book concludes with a discussion of technologies that are enabling the visualization of lipids, proteins, and other molecular components at unprecedented spatiotemporal resolution. It also explains the ins and outs of the rapidly developing high- or superresolution microscopy field, including new methods and data analysis tools that exclusively pertain to these techniques. This integration of membrane biology and advanced imaging techniques emphasizes the interdisciplinary nature of this exciting field. The array of contributions from leading world experts makes this book a valuable tool for the visualization of signaling nanoplatforms by means of cutting-edge optical microscopy tools.
Author: Nobuhiko Yamamoto
Publisher: Humana
Published: 2021-05-13
Total Pages: 331
ISBN-13: 9781071605349
DOWNLOAD EBOOKThis volume looks at the methodology and techniques used by experts to study how certain molecules function in specific locations, and their temporal patterns. Chapters in this book cover topics such as in vivo single-molecule tracking of voltage-gated calcium channels with split-fluorescent proteins in CRISPR-engineering C. elegans; protein-protein interactions in membranes using single particle tracking; neuropathological diseases revealed by quantum-dot single particle tracking; SPoD-OnSPAN; and investigating molecular diffusion inside small neuronal compartments with two-photon fluorescence correlation spectroscopy. In the Neuromethods series style, chapters include the kind of detail and key advice from the specialists needed to get successful results in your laboratory. Cutting-edge and comprehensive, Single Molecule Microscopy is a valuable resource for any researcher interested in learning more about this important field.
Author:
Publisher: Academic Press
Published: 2010-07-09
Total Pages: 745
ISBN-13: 0123814839
DOWNLOAD EBOOKSingle molecule tools have begun to revolutionize the molecular sciences, from biophysics to chemistry to cell biology. They hold the promise to be able to directly observe previously unseen molecular heterogeneities, quantitatively dissect complex reaction kinetics, ultimately miniaturize enzyme assays, image components of spatially distributed samples, probe the mechanical properties of single molecules in their native environment, and "just look at the thing" as anticipated by the visionary Richard Feynman already half a century ago. Single Molecule Tools, Part B: Super-Resolution, Particle Tracking, Multiparameter, and Force Based Methods captures a snapshot of this vibrant, rapidly expanding field, presenting articles from pioneers in the field intended to guide both the newcomer and the expert through the intricacies of getting single molecule tools. - Includes time-tested core methods and new innovations applicable to any researcher employing single molecule tools - Methods included are useful to both established researchers and newcomers to the field - Relevant background and reference information given for procedures can be used as a guide to developing protocols in a number of disciplines