Single Frequency Semiconductor Lasers

Single Frequency Semiconductor Lasers

Author: Zujie Fang

Publisher: Springer

Published: 2017-07-29

Total Pages: 317

ISBN-13: 9811052573

DOWNLOAD EBOOK

This book systematically introduces the single frequency semiconductor laser, which is widely used in many vital advanced technologies, such as the laser cooling of atoms and atomic clock, high-precision measurements and spectroscopy, coherent optical communications, and advanced optical sensors. It presents both the fundamentals and characteristics of semiconductor lasers, including basic F-P structure and monolithic integrated structures; interprets laser noises and their measurements; and explains mechanisms and technologies relating to the main aspects of single frequency lasers, including external cavity lasers, frequency stabilization technologies, frequency sweeping, optical phase locked loops, and so on. It paints a clear, physical picture of related technologies and reviews new developments in the field as well. It will be a useful reference to graduate students, researchers, and engineers in the field.


Single Frequency Semiconductor Lasers

Single Frequency Semiconductor Lasers

Author: Jens Buus

Publisher: SPIE Press

Published: 1991

Total Pages: 128

ISBN-13: 9780819405357

DOWNLOAD EBOOK

This tutorial text describes the properties of advanced semiconductor lasers in detail. Although the text gives a detailed theoretical account, a number of practical examples and experimental results are described as well. The material presented is at an advanced level and is of particular interest to scientists and engineers with a basic familiarity with semiconductor lasers who would like a description of the properties of single frequency semiconductor lasers and of the possibilities offered by these devices.


Unlocking Dynamical Diversity

Unlocking Dynamical Diversity

Author: Deborah M. Kane

Publisher: John Wiley & Sons

Published: 2005-11-01

Total Pages: 356

ISBN-13: 0470856203

DOWNLOAD EBOOK

Applications of semiconductor lasers with optical feedback systems are driving rapid developments in theoretical and experimental research. The very broad wavelength-gain-bandwidth of semiconductor lasers combined with frequency-filtered, strong optical feedback create the tunable, single frequency laser systems utilised in telecommunications, environmental sensing, measurement and control. Those with weak to moderate optical feedback lead to the chaotic semiconductor lasers of private communication. This resource illustrates the diversity of dynamic laser states and the technological applications thereof, presenting a timely synthesis of current findings, and providing the roadmap for exploiting their future potential. * Provides theory-based explanations underpinned by a vast range of experimental studies on optical feedback, including conventional, phase conjugate and frequency- filtered feedback in standard, commercial and single-stripe semiconductor lasers * Includes the classic Lang-Kobayashi equation model, through to more recent theory, with new developments in techniques for solving delay differential equations and bifurcation analysis * Explores developments in self-mixing interferometry to produce sub-nanometre sensitivity in path-length measurements * Reviews tunable single frequency semiconductor lasers and systems and their diverse range of applications in sensing and optical communications * Emphasises the importance of synchronised chaotic semiconductor lasers using optical feedback and private communications systems Unlocking Dynamical Diversity illustrates all theory using real world examples gleaned from international cutting-edge research. Such an approach appeals to industry professionals working in semiconductor lasers, laser physics and laser applications and is essential reading for researchers and postgraduates in these fields.


Laser Diode Modulation and Noise

Laser Diode Modulation and Noise

Author: Klaus Petermann

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 327

ISBN-13: 9400929072

DOWNLOAD EBOOK

Laser diodes represent a key element in the emerging field of opto electronics which includes, for example, optical communication, optical sensors or optical disc systems. For all these applications, information is either transmitted, stored or read out. The performance of these systems depends to a great deal on the performance of the laser diode with regard to its modulation and noise characteristics. Since the modulation and noise characteristics of laser diodes are of vital importance for optoelectronic systems, the need for a book arises that concentrates on this subject. This book thus closes the gap between books on the device physics of semiconductor lasers and books on system design. Complementary to the specific topics concerning modulation and noise, the first part of this book reviews the basic laser characteristics, so that even a reader without detailed knowledge of laser diodes may follow the text. In order to understand the book, the reader should have a basic knowledge of electronics, semiconductor physics and optical communica tions. The work is primarily written for the engineer or scientist working in the field of optoelectronics; however, since the book is self-contained and since it contains a lot of numerical examples, it may serve as a textbook for graduate students. In the field of laser diode modulation and noise a vast amount has been published during recent years. Even though the book contains more than 600 references, only a small part of the existing literature is included.


Single-Frequency Fiber Lasers

Single-Frequency Fiber Lasers

Author: Zhongmin Yang

Publisher: Springer

Published: 2019-02-19

Total Pages: 174

ISBN-13: 9811360804

DOWNLOAD EBOOK

This book gives a contemporary overview of the technologies of single-frequency fiber lasers. The development of single-frequency fiber lasers is one of the most significant achievements in the field of laser photonics over the past two decades. Owing to the crucial demands of a laser sources with highly stable single-frequency operation, narrow linewidth, low noise, scalable to high output power, compact and robustness structure, fiber lasers have been intensively studied since its introduction to the single-frequency laser community and they still continuously proceed to trigger the emergence of new technologies and applications. This book systematically demonstrates the single-frequency fiber laser technologies from fundamental principles to state-of-the-art progress. Details of selected typical applications of single-frequency fiber lasers are also given and discussed. The reader will acquire a good knowledge of the current situation within this important field.


Distributed Feedback Semiconductor Lasers

Distributed Feedback Semiconductor Lasers

Author: John E. Carroll

Publisher: IET

Published: 1998

Total Pages: 446

ISBN-13: 9780852969175

DOWNLOAD EBOOK

Concentrating on presenting a thorough analysis of DFB lasers from a level suitable for research students, this book emphasises and gives extensive coverage of computer aided modeling techniques.


Semiconductor Lasers

Semiconductor Lasers

Author: Govind P. Agrawal

Publisher: Springer Science & Business Media

Published: 2013-11-27

Total Pages: 630

ISBN-13: 1461304814

DOWNLOAD EBOOK

Since its invention in 1962, the semiconductor laser has come a long way. Advances in material purity and epitaxial growth techniques have led to a variety of semiconductor lasers covering a wide wavelength range of 0. 3- 100 ~m. The development during the 1970s of GaAs semiconductor lasers, emitting in the near-infrared region of 0. 8-0. 9 ~m, resulted in their use for the first generation of optical fiber communication systems. However, to take advantage oflow losses in silica fibers occurring around 1. 3 and 1. 55 ~m, the emphasis soon shifted toward long-wavelength semiconductor lasers. The material system of choice in this wavelength range has been the quaternary alloy InGaAsP. During the last five years or so, the intense development effort devoted to InGaAsP lasers has resulted in a technology mature enough that lightwave transmission systems using InGaAsP lasers are currently being deployed throughout the world. This book is intended to provide a comprehensive account of long-wave length semiconductor lasers. Particular attention is paid to InGaAsP lasers, although we also consider semiconductor lasers operating at longer wave lengths. The objective is to provide an up-to-date understanding of semicon ductor lasers while incorporating recent research results that are not yet available in the book form. Although InGaAsP lasers are often used as an example, the basic concepts discussed in this text apply to all semiconductor lasers, irrespective of their wavelengths.


Semiconductor Disk Lasers

Semiconductor Disk Lasers

Author: Oleg G. Okhotnikov

Publisher: John Wiley & Sons

Published: 2010-03-30

Total Pages: 330

ISBN-13: 9783527630400

DOWNLOAD EBOOK

This timely publication presents a review of the most recent developments in the field of Semiconductor Disk Lasers. Covering a wide range of key topics, such as operating principles, thermal management, nonlinear frequency conversion, semiconductor materials, short pulse generation, electrical pumping, and laser applications, the book provides readers with a comprehensive account of the fundamentals and latest advances in this rich and diverse field. In so doing, it brings together contributions from world experts at major collaborative research centers in Europe and the USA. Each chapter includes a tutorial style introduction to the selected topic suitable for postgraduate students and scientists with a basic background in optics - making it of interest to a wide range of scientists, researchers, engineers and physicists working and interested in this rapidly developing field. It will also serve as additional reading for students in the field.


Digital Communications Using Chaos and Nonlinear Dynamics

Digital Communications Using Chaos and Nonlinear Dynamics

Author: Jia-Ming Liu

Publisher: Springer Science & Business Media

Published: 2006-11-22

Total Pages: 392

ISBN-13: 038729788X

DOWNLOAD EBOOK

This book provides a summary of the research conducted at UCLA, Stanford University, and UCSD over the last ?ve years in the area of nonlinear dyn- ics and chaos as applied to digital communications. At ?rst blush, the term “chaotic communications” seems like an oxymoron; how could something as precise and deterministic as digital communications be chaotic? But as this book will demonstrate, the application of chaos and nonlinear dynamicstocommunicationsprovidesmanypromisingnewdirectionsinareas of coding, nonlinear optical communications, and ultra-wideband commu- cations. The eleven chapters of the book summarize many of the promising new approaches that have been developed, and point the way to new research directions in this ?eld. Digital communications techniques have been continuously developed and re?ned for the past ?fty years to the point where today they form the heart of a multi-hundred billion dollar per year industry employing hundreds of thousands of people on a worldwide basis. There is a continuing need for transmission and reception of digital signals at higher and higher data rates. There are a variety of physical limits that place an upper limit on these data rates, and so the question naturally arises: are there alternative communi- tion techniques that can overcome some of these limitations? Most digital communications today is carried out using electronic devices that are essentially “linear,” and linear system theory has been used to c- tinually re?ne their performance. In many cases, inherently nonlinear devices are linearized in order to achieve a certain level of linear system performance.


Semiconductor Lasers

Semiconductor Lasers

Author: Junji Ohtsubo

Publisher: Springer

Published: 2017-05-03

Total Pages: 679

ISBN-13: 3319561383

DOWNLOAD EBOOK

This book describes the fascinating recent advances made concerning the chaos, stability and instability of semiconductor lasers, and discusses their applications and future prospects in detail. It emphasizes the dynamics in semiconductor lasers by optical and electronic feedback, optical injection, and injection current modulation. Applications of semiconductor laser chaos, control and noise, and semiconductor lasers are also demonstrated. Semiconductor lasers with new structures, such as vertical-cavity surface-emitting lasers and broad-area semiconductor lasers, are intriguing and promising devices. Current topics include fast physical number generation using chaotic semiconductor lasers for secure communication, development of chaos, quantum-dot semiconductor lasers and quantum-cascade semiconductor lasers, and vertical-cavity surface-emitting lasers. This fourth edition has been significantly expanded to reflect the latest developments. The fundamental theory of laser chaos and the chaotic dynamics in semiconductor lasers are discussed, but also for example the method of self-mixing interferometry in quantum-cascade lasers, which is indispensable in practical applications. Further, this edition covers chaos synchronization between two lasers and the application to secure optical communications. Another new topic is the consistency and synchronization property of many coupled semiconductor lasers in connection with the analogy of the dynamics between synaptic neurons and chaotic semiconductor lasers, which are compatible nonlinear dynamic elements. In particular, zero-lag synchronization between distant neurons plays a crucial role for information processing in the brain. Lastly, the book presents an application of the consistency and synchronization property in chaotic semiconductor lasers, namely a type of neuro-inspired information processing referred to as reservoir computing.