Simulation-Based Optimization

Simulation-Based Optimization

Author: Abhijit Gosavi

Publisher: Springer

Published: 2014-10-30

Total Pages: 530

ISBN-13: 1489974911

DOWNLOAD EBOOK

Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning introduce the evolving area of static and dynamic simulation-based optimization. Covered in detail are model-free optimization techniques – especially designed for those discrete-event, stochastic systems which can be simulated but whose analytical models are difficult to find in closed mathematical forms. Key features of this revised and improved Second Edition include: · Extensive coverage, via step-by-step recipes, of powerful new algorithms for static simulation optimization, including simultaneous perturbation, backtracking adaptive search and nested partitions, in addition to traditional methods, such as response surfaces, Nelder-Mead search and meta-heuristics (simulated annealing, tabu search, and genetic algorithms) · Detailed coverage of the Bellman equation framework for Markov Decision Processes (MDPs), along with dynamic programming (value and policy iteration) for discounted, average, and total reward performance metrics · An in-depth consideration of dynamic simulation optimization via temporal differences and Reinforcement Learning: Q-Learning, SARSA, and R-SMART algorithms, and policy search, via API, Q-P-Learning, actor-critics, and learning automata · A special examination of neural-network-based function approximation for Reinforcement Learning, semi-Markov decision processes (SMDPs), finite-horizon problems, two time scales, case studies for industrial tasks, computer codes (placed online) and convergence proofs, via Banach fixed point theory and Ordinary Differential Equations Themed around three areas in separate sets of chapters – Static Simulation Optimization, Reinforcement Learning and Convergence Analysis – this book is written for researchers and students in the fields of engineering (industrial, systems, electrical and computer), operations research, computer science and applied mathematics.


Handbook of Simulation Optimization

Handbook of Simulation Optimization

Author: Michael C Fu

Publisher: Springer

Published: 2014-11-13

Total Pages: 400

ISBN-13: 1493913840

DOWNLOAD EBOOK

The Handbook of Simulation Optimization presents an overview of the state of the art of simulation optimization, providing a survey of the most well-established approaches for optimizing stochastic simulation models and a sampling of recent research advances in theory and methodology. Leading contributors cover such topics as discrete optimization via simulation, ranking and selection, efficient simulation budget allocation, random search methods, response surface methodology, stochastic gradient estimation, stochastic approximation, sample average approximation, stochastic constraints, variance reduction techniques, model-based stochastic search methods and Markov decision processes. This single volume should serve as a reference for those already in the field and as a means for those new to the field for understanding and applying the main approaches. The intended audience includes researchers, practitioners and graduate students in the business/engineering fields of operations research, management science, operations management and stochastic control, as well as in economics/finance and computer science.


Stochastic Simulation Optimization

Stochastic Simulation Optimization

Author: Chun-hung Chen

Publisher: World Scientific

Published: 2011

Total Pages: 246

ISBN-13: 9814282642

DOWNLOAD EBOOK

With the advance of new computing technology, simulation is becoming very popular for designing large, complex and stochastic engineering systems, since closed-form analytical solutions generally do not exist for such problems. However, the added flexibility of simulation often creates models that are computationally intractable. Moreover, to obtain a sound statistical estimate at a specified level of confidence, a large number of simulation runs (or replications) is usually required for each design alternative. If the number of design alternatives is large, the total simulation cost can be very expensive. Stochastic Simulation Optimization addresses the pertinent efficiency issue via smart allocation of computing resource in the simulation experiments for optimization, and aims to provide academic researchers and industrial practitioners with a comprehensive coverage of OCBA approach for stochastic simulation optimization. Starting with an intuitive explanation of computing budget allocation and a discussion of its impact on optimization performance, a series of OCBA approaches developed for various problems are then presented, from the selection of the best design to optimization with multiple objectives. Finally, this book discusses the potential extension of OCBA notion to different applications such as data envelopment analysis, experiments of design and rare-event simulation.


Modeling, Simulation, and Optimization of Supply Chains

Modeling, Simulation, and Optimization of Supply Chains

Author: Ciro D'Apice

Publisher: SIAM

Published: 2010-07-01

Total Pages: 209

ISBN-13: 0898717000

DOWNLOAD EBOOK

This book offers a state-of-the-art introduction to the mathematical theory of supply chain networks, focusing on those described by partial differential equations. The authors discuss modeling of complex supply networks as well as their mathematical theory, explore modeling, simulation, and optimization of some of the discussed models, and present analytical and numerical results on optimization problems. Real-world examples are given to demonstrate the applicability of the presented approaches. Graduate students and researchers who are interested in the theory of supply chain networks described by partial differential equations will find this book useful. It can also be used in advanced graduate-level courses on modeling of physical phenomena as well as introductory courses on supply chain theory.


Modeling, Simulation, and Optimization

Modeling, Simulation, and Optimization

Author: Pandian Vasant

Publisher: Springer

Published: 2017-12-07

Total Pages: 133

ISBN-13: 3319705423

DOWNLOAD EBOOK

This book features selected contributions in the areas of modeling, simulation, and optimization. The contributors discusses requirements in problem solving for modeling, simulation, and optimization. Modeling, simulation, and optimization have increased in demand in exponential ways and how potential solutions might be reached. They describe how new technologies in computing and engineering have reduced the dimension of data coverage worldwide, and how recent inventions in information and communication technology (ICT) have inched towards reducing the gaps and coverage of domains globally. The chapters cover how the digging of information in a large data and soft-computing techniques have contributed to a strength in prediction and analysis, for decision making in computer science, technology, management, social computing, green computing, and telecom. The book provides an insightful reference to the researchers in the fields of engineering and computer science. Researchers, academics, and professionals will benefit from this volume. Features selected expanded papers in modeling, simulation, and optimization from COMPSE 2016; Includes research into soft computing and its application in engineering and technology; Presents contributions from global experts in academia and industry in modeling, simulation, and optimization.


Reduced-Order Modeling (ROM) for Simulation and Optimization

Reduced-Order Modeling (ROM) for Simulation and Optimization

Author: Winfried Keiper

Publisher: Springer

Published: 2018-04-11

Total Pages: 184

ISBN-13: 3319753193

DOWNLOAD EBOOK

This edited monograph collects research contributions and addresses the advancement of efficient numerical procedures in the area of model order reduction (MOR) for simulation, optimization and control. The topical scope includes, but is not limited to, new out-of-the-box algorithmic solutions for scientific computing, e.g. reduced basis methods for industrial problems and MOR approaches for electrochemical processes. The target audience comprises research experts and practitioners in the field of simulation, optimization and control, but the book may also be beneficial for graduate students alike.


Modeling, Simulation and Optimization

Modeling, Simulation and Optimization

Author: Biplab Das

Publisher: Springer Nature

Published: 2021-03-17

Total Pages: 802

ISBN-13: 9811598290

DOWNLOAD EBOOK

This book includes selected peer-reviewed papers presented at the International Conference on Modeling, Simulation and Optimization, organized by National Institute of Technology, Silchar, Assam, India, during 3–5 August 2020. The book covers topics of modeling, simulation and optimization, including computational modeling and simulation, system modeling and simulation, device/VLSI modeling and simulation, control theory and applications, modeling and simulation of energy system and optimization. The book disseminates various models of diverse systems and includes solutions of emerging challenges of diverse scientific fields.


Optimization, Simulation and Control

Optimization, Simulation and Control

Author: Rentsen Enkhbat

Publisher: Springer Nature

Published: 2023-12-01

Total Pages: 202

ISBN-13: 303141229X

DOWNLOAD EBOOK

This volume gathers selected, peer-reviewed works presented at the 7th International Conference on Optimization, Simulation and Control, ICOSC 2022, held at the National University of Mongolia, Ulaanbaatar, June 20–22, 2022. Topics covered include (but are not limited to) mathematical programming; network, global, linear, nonlinear, parametric, stochastic, and multi-objective optimization; control theory; biomathematics; and deep and machine learning, to name a few. Held every three years since 2002, the ICOSC conference has become a traditional gathering for experienced and young researchers in optimization and control to share recent findings in these fields and discuss novel applications in myriad sectors. Researchers and graduate students in the fields of mathematics, engineering, and computer science can greatly benefit from this book, which can also be enjoyed by advanced practitioners in research laboratories and the industry. The 2022 edition of the ICOSC conference was sponsored by the Mongolian Academy of Sciences, the National University of Mongolia and the German-Mongolian Institute for Resources and Technology.


Design, Simulation and Optimization of Adsorptive and Chromatographic Separations: A Hands-On Approach

Design, Simulation and Optimization of Adsorptive and Chromatographic Separations: A Hands-On Approach

Author: Kevin R. Wood

Publisher: John Wiley & Sons

Published: 2018-07-16

Total Pages: 434

ISBN-13: 3527344691

DOWNLOAD EBOOK

A comprehensive resource to the construction, use, and modification of the wide variety of adsorptive and chromatographic separations Design, Simulation and Optimization of Adsorptive and Chromatographic Separations offers the information needed to effectively design, simulate, and optimize adsorptive and chromatographic separations for a wide range of industrial applications. The authors?noted experts in the field?cover the fundamental principles, the applications, and a range of modeling techniques for the processes. The text presents a unified approach that includes the ideal and intermediate equations and offers a wealth of hands-on case studies that employ the rigorous simulation packages Aspen Adsorption and Aspen Chromatography. The text reviews the effective design strategies, details design considerations, and the assumptions which the modelers are allowed to make. The authors also cover shortcut design methods as well as mathematical tools that help to determine optimal operating conditions. This important text: -Covers everything from the underlying pheonmena to model optimization and the customization of model code -Includes practical tutorials that allow for independent review and study -Offers a comprehensive review of the construction, use, and modification of the wide variety of adsorptive and chromatographic separations -Contains contributions from three noted experts in the field Written for chromatographers, process engineers, ehemists, and other professionals, Design, Simulation and Optimization of Adsorptive and Chromatographic Separations offers a comprehensive review of the construction, use, and modification of adsorptive and chromatographic separations.


Computing Tools for Modeling, Optimization and Simulation

Computing Tools for Modeling, Optimization and Simulation

Author: Manuel Laguna

Publisher: Springer Science & Business Media

Published: 1999-11-30

Total Pages: 330

ISBN-13: 9780792377184

DOWNLOAD EBOOK

Computing Tools for Modeling, Optimization and Simulation reflects the need for preserving the marriage between operations research and computing in order to create more efficient and powerful software tools in the years ahead. The 17 papers included in this volume were carefully selected to cover a wide range of topics related to the interface between operations research and computer science. The volume includes the now perennial applications of rnetaheuristics (such as genetic algorithms, scatter search, and tabu search) as well as research on global optimization, knowledge management, software rnaintainability and object-oriented modeling. These topics reflect the complexity and variety of the problems that current and future software tools must be capable of tackling. The OR/CS interface is frequently at the core of successful applications and the development of new methodologies, making the research in this book a relevant reference in the future. The editors' goal for this book has been to increase the interest in the interface of computer science and operations research. Both researchers and practitioners will benefit from this book. The tutorial papers may spark the interest of practitioners for developing and applying new techniques to complex problems. In addition, the book includes papers that explore new angles of well-established methods for problems in the area of nonlinear optimization and mixed integer programming, which seasoned researchers in these fields may find fascinating.