Simplified And Highly Stable Lattice Boltzmann Method: Theory And Applications

Simplified And Highly Stable Lattice Boltzmann Method: Theory And Applications

Author: Zhen Chen

Publisher: World Scientific

Published: 2020-09-15

Total Pages: 275

ISBN-13: 9811228515

DOWNLOAD EBOOK

This unique professional volume is about the recent advances in the lattice Boltzmann method (LBM). It introduces a new methodology, namely the simplified and highly stable lattice Boltzmann method (SHSLBM), for constructing numerical schemes within the lattice Boltzmann framework. Through rigorous mathematical derivations and abundant numerical validations, the SHSLBM is found to outperform the conventional LBM in terms of memory cost, boundary treatment and numerical stability.This must-have title provides every necessary detail of the SHSLBM and sample codes for implementation. It is a useful handbook for scholars, researchers, professionals and students who are keen to learn, employ and further develop this novel numerical method.


Simplified and Highly Stable Lattice Boltzmann Method

Simplified and Highly Stable Lattice Boltzmann Method

Author: Zhen Chen

Publisher:

Published: 2020-09-09

Total Pages: 0

ISBN-13: 9789811228490

DOWNLOAD EBOOK

This unique professional volume is about the recent advances in the lattice Boltzmann method (LBM). It introduces a new methodology, namely the simplified and highly stable lattice Boltzmann method (SHSLBM), for constructing numerical schemes within the lattice Boltzmann framework. Through rigorous mathematical derivations and abundant numerical validations, the SHSLBM is found to outperform the conventional LBM in terms of memory cost, boundary treatment and numerical stability. This must-have title provides every necessary detail of the SHSLBM and sample codes for implementation. It is a useful handbook for scholars, researchers, professionals and students who are keen to learn, employ and further develop this novel numerical method.


The Lattice Boltzmann Method

The Lattice Boltzmann Method

Author: Timm Krüger

Publisher: Springer

Published: 2016-11-07

Total Pages: 705

ISBN-13: 3319446495

DOWNLOAD EBOOK

This book is an introduction to the theory, practice, and implementation of the Lattice Boltzmann (LB) method, a powerful computational fluid dynamics method that is steadily gaining attention due to its simplicity, scalability, extensibility, and simple handling of complex geometries. The book contains chapters on the method's background, fundamental theory, advanced extensions, and implementation. To aid beginners, the most essential paragraphs in each chapter are highlighted, and the introductory chapters on various LB topics are front-loaded with special "in a nutshell" sections that condense the chapter's most important practical results. Together, these sections can be used to quickly get up and running with the method. Exercises are integrated throughout the text, and frequently asked questions about the method are dealt with in a special section at the beginning. In the book itself and through its web page, readers can find example codes showing how the LB method can be implemented efficiently on a variety of hardware platforms, including multi-core processors, clusters, and graphics processing units. Students and scientists learning and using the LB method will appreciate the wealth of clearly presented and structured information in this volume.


Perspectives in Mathematical Sciences

Perspectives in Mathematical Sciences

Author: Yisong Yang

Publisher: World Scientific

Published: 2010

Total Pages: 371

ISBN-13: 9814289310

DOWNLOAD EBOOK

1. Periodic boundary problems for analytic function including automorphic functions / Haitao Cai and Jian-Ke Lu -- 2. Subharmonic bifurcations and chaos for a model of micro-cantilever in MEMS / Yushu Chen, Liangqiang Zhou and Fangqi Chen -- 3. Canonical sample spaces for random dynamical systems / Jinqiao Duan, Xingye Kan and Bjorn Schmalfuss -- 4. Epidemic propagation dynamics on complex networks / Xinchu Fu ... [et al.] -- 5. Inverse problems for equations of parabolic type / Zhibin Han, Yongzhong Huang and Ming Jian -- 6. The existence and asymptotic properties of nontrivial solutions of nonlinear (2 - q)-Laplacian type problems with linking geometric structure / Gongbao Li and Zhaofen Shen -- 7. Chaotic dynamics for the two-component Bose-Einstein condensate system / Jibin Li -- 8. Recent developments and perspectives in nonlinear dynamics / Zengrong Liu -- 9. Mathematical aspects of the cold plasma model / Thomas H. Otway -- 10. Gravitating Yang-Mills fields in all dimensions / Eugen Radu and D. H. Tchrakian -- 11. Hamiltonian constraint and Mandelstam identities over extended knot families [symbol] and [symbol] in extended loop gravity / Dan Shao, Liang Shao and Changgui Shao -- 12. Lattice Boltzmann simulation of nonlinear Schrödinger equation with variable coefficients / Baochang Shi -- 13. Exponential stability of nonlocal time-delayed burgers equation / Yanbin Tang -- 14. Bifurcation analysis of the Swift-Hohenberg equation with quintic nonlinearity and Neumann boundary condition / Qingkun Xiao and Hongjun Gao -- 15. A new GL method for mathematical and physical problems / Ganquan Xie and Jianhua Li -- 16. Harmonically representing topological classes / Yisong Yang.


The Lattice Boltzmann Equation: For Complex States of Flowing Matter

The Lattice Boltzmann Equation: For Complex States of Flowing Matter

Author: Sauro Succi

Publisher: Oxford University Press

Published: 2018-04-13

Total Pages: 784

ISBN-13: 0192538853

DOWNLOAD EBOOK

Flowing matter is all around us, from daily-life vital processes (breathing, blood circulation), to industrial, environmental, biological, and medical sciences. Complex states of flowing matter are equally present in fundamental physical processes, far remote from our direct senses, such as quantum-relativistic matter under ultra-high temperature conditions (quark-gluon plasmas). Capturing the complexities of such states of matter stands as one of the most prominent challenges of modern science, with multiple ramifications to physics, biology, mathematics, and computer science. As a result, mathematical and computational techniques capable of providing a quantitative account of the way that such complex states of flowing matter behave in space and time are becoming increasingly important. This book provides a unique description of a major technique, the Lattice Boltzmann method to accomplish this task. The Lattice Boltzmann method has gained a prominent role as an efficient computational tool for the numerical simulation of a wide variety of complex states of flowing matter across a broad range of scales; from fully-developed turbulence, to multiphase micro-flows, all the way down to nano-biofluidics and lately, even quantum-relativistic sub-nuclear fluids. After providing a self-contained introduction to the kinetic theory of fluids and a thorough account of its transcription to the lattice framework, this text provides a survey of the major developments which have led to the impressive growth of the Lattice Boltzmann across most walks of fluid dynamics and its interfaces with allied disciplines. Included are recent developments of Lattice Boltzmann methods for non-ideal fluids, micro- and nanofluidic flows with suspended bodies of assorted nature and extensions to strong non-equilibrium flows beyond the realm of continuum fluid mechanics. In the final part, it presents the extension of the Lattice Boltzmann method to quantum and relativistic matter, in an attempt to match the major surge of interest spurred by recent developments in the area of strongly interacting holographic fluids, such as electron flows in graphene.


Lattice-Gas Cellular Automata and Lattice Boltzmann Models

Lattice-Gas Cellular Automata and Lattice Boltzmann Models

Author: Dieter A. Wolf-Gladrow

Publisher: Springer

Published: 2004-10-19

Total Pages: 320

ISBN-13: 3540465863

DOWNLOAD EBOOK

Lattice-gas cellular automata (LGCA) and lattice Boltzmann models (LBM) are relatively new and promising methods for the numerical solution of nonlinear partial differential equations. The book provides an introduction for graduate students and researchers. Working knowledge of calculus is required and experience in PDEs and fluid dynamics is recommended. Some peculiarities of cellular automata are outlined in Chapter 2. The properties of various LGCA and special coding techniques are discussed in Chapter 3. Concepts from statistical mechanics (Chapter 4) provide the necessary theoretical background for LGCA and LBM. The properties of lattice Boltzmann models and a method for their construction are presented in Chapter 5.


Handbook of HydroInformatics

Handbook of HydroInformatics

Author: Saeid Eslamian

Publisher: Elsevier

Published: 2022-12-06

Total Pages: 422

ISBN-13: 0128219521

DOWNLOAD EBOOK

Handbook of HydroInformatics Volume III: Water Data Management Best Practices presents the latest and most updated data processing techniques that are fundamental to Water Science and Engineering disciplines. These include a wide range of the new methods that are used in hydro-modeling such as Atmospheric Teleconnection Pattern, CONUS-Scale Hydrologic Modeling, Copula Function, Decision Support System, Downscaling Methods, Dynamic System Modeling, Economic Impacts and Models, Geostatistics and Geospatial Frameworks, Hydrologic Similarity Indices, Hydropower/Renewable Energy Models, Sediment Transport Dynamics Advanced Models, Social Data Mining, and Wavelet Transforms. This volume is an example of true interdisciplinary work. The audience includes postgraduates and above interested in Water Science, Geotechnical Engineering, Soil Science, Civil Engineering, Chemical Engineering, Computer Engineering, Engineering, Applied Science, Earth and Geoscience, Atmospheric Science, Geography, Environment Science, Natural Resources, Mathematical Science, and Social Sciences. It is a fully comprehensive handbook which provides all the information needed related to the best practices for managing water data. - Contributions from global experts in the fields of data management research, climate change and resilience, insufficient data problem, etc. - Thorough applied examples and case studies in each chapter, providing the reader with real world scenarios for comparison. - Includes a wide range of new methods that are used in hydro-modeling, with step-by-step guides on how to use them.


Nanofluids

Nanofluids

Author: Mohammad Mehdi Rashidi

Publisher: Elsevier

Published: 2024-07-17

Total Pages: 427

ISBN-13: 0443136262

DOWNLOAD EBOOK

Nanofluids are a new class of heat transfer fluids engineered by dispersing and stably suspending nanoparticles in traditional heat transfer fluids. Recently they have obtained global attention from the scientific community owing to their unique properties and significant applications in different engineering fields. Nanofluids: Preparation, Applications and Simulation Methods provides a comprehensive review of recent advances in this important research field. Different approaches for preparing some remarkable families of nanofluids such as aluminum oxide-based nanofluids, CuO/Cu-based nanofluids, carbon nanotubes/graphene-based nanofluids, ZnO-based nanofluids, Fe3O4-based nanofluids, and SiO2-based nanofluids are discussed in detail as well as their current and potential applications. Different approaches for numerical, semi-analytical and analytical simulations are also discussed including molecular dynamics, the Lattice Boltzmann method, and spectral methods, as well as advanced analytical techniques such as the Differential Transform Method, the Homotopy Analysis Method, and Optimal Homotopy Analysis. The book will be a valuable reference resource for academic and industrial researchers, materials scientists and engineers, nanotechnologists, and chemists working in the development of nanomaterials and nanofluids for heat transfer in energy and engineering applications. - Covers the synthesis of nanostructures, preparation of nanofluids, different applications and proposed models for fluid mechanics and heat transfer - Presents recent advances on preparation methods, including green chemistry-based methods for preparation of nanomaterials and nanofluids - Includes novel model-based approaches such as molecular dynamics and Lattice Boltzmann methods - Delves into applications in renewable energy technologies and thermal management - Contains a Semi-analytical approach for solving Time-Fractional Navier-Stokes Equation


Mechanics and Mechatronics (Icmm2015)

Mechanics and Mechatronics (Icmm2015)

Author: A. Mehran Shahhosseini

Publisher: World Scientific Publishing Company

Published: 2015-10-14

Total Pages: 1268

ISBN-13: 9789814699136

DOWNLOAD EBOOK

This proceedings brings together one hundred and fifty two selected papers presented at the 2015 International Conference on Mechanics and Mechatronics (ICMM 2015), which was held in Changsha, Hunan, China, during March 13-15 2015.ICMM 2015 focuses on 7 main areas — Applied Mechanics, Mechanical Engineering, Instrumentation, Automation, and Robotics, Computer Information Processing, and Civil Engineering. Experts in this field from eight countries, including China, South Korea, Taiwan, Japan, Malaysia, Hong Kong, Indonesia and Saudi Arabia, contributed to the collection of research results and developments.ICMM 2015 provides an excellent international platform for researchers to share their knowledge and results in theory, methodology and applications of Applied Mechanics and Mechatronics. All papers selected to this proceedings were subject to a rigorous peer-review process by at least two independent peers. The papers are selected based on innovation, organization, and quality of presentation.