Simple Mathematical Models of Gene Regulatory Dynamics

Simple Mathematical Models of Gene Regulatory Dynamics

Author: Michael C. Mackey

Publisher: Springer

Published: 2016-11-09

Total Pages: 128

ISBN-13: 3319453181

DOWNLOAD EBOOK

This is a short and self-contained introduction to the field of mathematical modeling of gene-networks in bacteria. As an entry point to the field, we focus on the analysis of simple gene-network dynamics. The notes commence with an introduction to the deterministic modeling of gene-networks, with extensive reference to applicable results coming from dynamical systems theory. The second part of the notes treats extensively several approaches to the study of gene-network dynamics in the presence of noise—either arising from low numbers of molecules involved, or due to noise external to the regulatory process. The third and final part of the notes gives a detailed treatment of three well studied and concrete examples of gene-network dynamics by considering the lactose operon, the tryptophan operon, and the lysis-lysogeny switch. The notes contain an index for easy location of particular topics as well as an extensive bibliography of the current literature. The target audience of these notes are mainly graduates students and young researchers with a solid mathematical background (calculus, ordinary differential equations, and probability theory at a minimum), as well as with basic notions of biochemistry, cell biology, and molecular biology. They are meant to serve as a readable and brief entry point into a field that is currently highly active, and will allow the reader to grasp the current state of research and so prepare them for defining and tackling new research problems.


Probabilistic Boolean Networks

Probabilistic Boolean Networks

Author: Ilya Shmulevich

Publisher: SIAM

Published: 2010-01-21

Total Pages: 276

ISBN-13: 0898716926

DOWNLOAD EBOOK

The first comprehensive treatment of probabilistic Boolean networks, unifying different strands of current research and addressing emerging issues.


Systems Biology

Systems Biology

Author: Jinzhi Lei

Publisher:

Published: 2021

Total Pages: 0

ISBN-13: 9783030730345

DOWNLOAD EBOOK

This book discusses the mathematical simulation of biological systems, with a focus on the modeling of gene expression, gene regulatory networks and stem cell regeneration. The diffusion of morphogens is addressed by introducing various reaction-diffusion equations based on different hypotheses concerning the process of morphogen gradient formation. The robustness of steady-state gradients is also covered through boundary value problems. The introduction gives an overview of the relevant biological concepts (cells, DNA, organism development) and provides the requisite mathematical preliminaries on continuous dynamics and stochastic modeling. A basic understanding of calculus is assumed. The techniques described in this book encompass a wide range of mechanisms, from molecular behavior to population dynamics, and the inclusion of recent developments in the literature together with first-hand results make it an ideal reference for both new students and experienced researchers in the field of systems biology and applied mathematics.


Stochastic Dynamics for Systems Biology

Stochastic Dynamics for Systems Biology

Author: Christian Mazza

Publisher: CRC Press

Published: 2016-04-19

Total Pages: 274

ISBN-13: 1466514949

DOWNLOAD EBOOK

Stochastic Dynamics for Systems Biology is one of the first books to provide a systematic study of the many stochastic models used in systems biology. The book shows how the mathematical models are used as technical tools for simulating biological processes and how the models lead to conceptual insights on the functioning of the cellular processing


Piecewise Deterministic Processes in Biological Models

Piecewise Deterministic Processes in Biological Models

Author: Ryszard Rudnicki

Publisher: Springer

Published: 2017-07-20

Total Pages: 177

ISBN-13: 3319612956

DOWNLOAD EBOOK

This book presents a concise introduction to piecewise deterministic Markov processes (PDMPs), with particular emphasis on their applications to biological models. Further, it presents examples of biological phenomena, such as gene activity and population growth, where different types of PDMPs appear: continuous time Markov chains, deterministic processes with jumps, processes with switching dynamics, and point processes. Subsequent chapters present the necessary tools from the theory of stochastic processes and semigroups of linear operators, as well as theoretical results concerning the long-time behaviour of stochastic semigroups induced by PDMPs and their applications to biological models. As such, the book offers a valuable resource for mathematicians and biologists alike. The first group will find new biological models that lead to interesting and often new mathematical questions, while the second can observe how to include seemingly disparate biological proc esses into a unified mathematical theory, and to arrive at revealing biological conclusions. The target audience primarily comprises of researchers in these two fields, but the book will also benefit graduate students.


Models of Life

Models of Life

Author: Kim Sneppen

Publisher: Cambridge University Press

Published: 2014-10-02

Total Pages: 353

ISBN-13: 1107061903

DOWNLOAD EBOOK

An overview of current models of biological systems, reflecting the major advances that have been made over the past decade.


Trends in Biomathematics: Modeling Epidemiological, Neuronal, and Social Dynamics

Trends in Biomathematics: Modeling Epidemiological, Neuronal, and Social Dynamics

Author: Rubem P. Mondaini

Publisher: Springer Nature

Published: 2023-07-24

Total Pages: 394

ISBN-13: 3031330501

DOWNLOAD EBOOK

This volume gathers together selected peer-reviewed works presented at the BIOMAT 2022 International Symposium, which was virtually held on November 7-11, 2022, with an organization staff based in Rio de Janeiro, Brazil. Topics touched on in this volume include infection spread in a population described by an agent-based approach; the study of gene essentiality via network-based computational modeling; stochastic models of neuronal dynamics; and the modeling of a statistical distribution of amino acids in protein domain families. The reader will also find texts in epidemic models with dynamic social distancing; with no vertical transmission; and with general incidence rates. Aspects of COVID-19 dynamics: the use of an SEIR model to analyze its spread in Brazil; the age-dependent manner of modeling its spread pattern; the impact of media awareness programs; and a web-based computational tool for Non-invasive hemodynamics evaluation of coronary stenosis are also covered. Held every year since 2001, The BIOMAT International Symposium gathers together, in a single conference, researchers from Mathematics, Physics, Biology, and affine fields to promote the interdisciplinary exchange of results, ideas and techniques, promoting truly international cooperation for problem discussion. BIOMAT volumes published from 2017 to 2021 are also available by Springer.


Computational Modeling of Gene Regulatory Networks

Computational Modeling of Gene Regulatory Networks

Author: Hamid Bolouri

Publisher: Imperial College Press

Published: 2008

Total Pages: 341

ISBN-13: 1848162200

DOWNLOAD EBOOK

This book serves as an introduction to the myriad computational approaches to gene regulatory modeling and analysis, and is written specifically with experimental biologists in mind. Mathematical jargon is avoided and explanations are given in intuitive terms. In cases where equations are unavoidable, they are derived from first principles or, at the very least, an intuitive description is provided. Extensive examples and a large number of model descriptions are provided for use in both classroom exercises as well as self-guided exploration and learning. As such, the book is ideal for self-learning and also as the basis of a semester-long course for undergraduate and graduate students in molecular biology, bioengineering, genome sciences, or systems biology.


Genomic Control Process

Genomic Control Process

Author: Isabelle S. Peter

Publisher: Academic Press

Published: 2015-01-21

Total Pages: 461

ISBN-13: 0124047467

DOWNLOAD EBOOK

Genomic Control Process explores the biological phenomena around genomic regulatory systems that control and shape animal development processes, and which determine the nature of evolutionary processes that affect body plan. Unifying and simplifying the descriptions of development and evolution by focusing on the causality in these processes, it provides a comprehensive method of considering genomic control across diverse biological processes. This book is essential for graduate researchers in genomics, systems biology and molecular biology seeking to understand deep biological processes which regulate the structure of animals during development. - Covers a vast area of current biological research to produce a genome oriented regulatory bioscience of animal life - Places gene regulation, embryonic and postembryonic development, and evolution of the body plan in a unified conceptual framework - Provides the conceptual keys to interpret a broad developmental and evolutionary landscape with precise experimental illustrations drawn from contemporary literature - Includes a range of material, from developmental phenomenology to quantitative and logic models, from phylogenetics to the molecular biology of gene regulation, from animal models of all kinds to evidence of every relevant type - Demonstrates the causal power of system-level understanding of genomic control process - Conceptually organizes a constellation of complex and diverse biological phenomena - Investigates fundamental developmental control system logic in diverse circumstances and expresses these in conceptual models - Explores mechanistic evolutionary processes, illuminating the evolutionary consequences of developmental control systems as they are encoded in the genome