Polycrystalline Silicon for Integrated Circuits and Displays

Polycrystalline Silicon for Integrated Circuits and Displays

Author: Ted Kamins

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 391

ISBN-13: 1461555779

DOWNLOAD EBOOK

Polycrystalline Silicon for Integrated Circuits and Displays, Second Edition presents much of the available knowledge about polysilicon. It represents an effort to interrelate the deposition, properties, and applications of polysilicon. By properly understanding the properties of polycrystalline silicon and their relation to the deposition conditions, polysilicon can be designed to ensure optimum device and integrated-circuit performance. Polycrystalline silicon has played an important role in integrated-circuit technology for two decades. It was first used in self-aligned, silicon-gate, MOS ICs to reduce capacitance and improve circuit speed. In addition to this dominant use, polysilicon is now also included in virtually all modern bipolar ICs, where it improves the basic physics of device operation. The compatibility of polycrystalline silicon with subsequent high-temperature processing allows its efficient integration into advanced IC processes. This compatibility also permits polysilicon to be used early in the fabrication process for trench isolation and dynamic random-access-memory (DRAM) storage capacitors. In addition to its integrated-circuit applications, polysilicon is becoming vital as the active layer in the channel of thin-film transistors in place of amorphous silicon. When polysilicon thin-film transistors are used in advanced active-matrix displays, the peripheral circuitry can be integrated into the same substrate as the pixel transistors. Recently, polysilicon has been used in the emerging field of microelectromechanical systems (MEMS), especially for microsensors and microactuators. In these devices, the mechanical properties, especially the stress in the polysilicon film, are critical to successful device fabrication. Polycrystalline Silicon for Integrated Circuits and Displays, Second Edition is an invaluable reference for professionals and technicians working with polycrystalline silicon in the integrated circuit and display industries.


ESD in Silicon Integrated Circuits

ESD in Silicon Integrated Circuits

Author: E. Ajith Amerasekera

Publisher: John Wiley & Sons

Published: 2002-05-22

Total Pages: 434

ISBN-13:

DOWNLOAD EBOOK

* Examines the various methods available for circuit protection, including coverage of the newly developed ESD circuit protection schemes for VLSI circuits. * Provides guidance on the implementation of circuit protection measures. * Includes new sections on ESD design rules, layout approaches, package effects, and circuit concepts. * Reviews the new Charged Device Model (CDM) test method and evaluates design requirements necessary for circuit protection.


Polycrystalline Silicon for Integrated Circuit Applications

Polycrystalline Silicon for Integrated Circuit Applications

Author: Ted Kamins

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 302

ISBN-13: 1461316812

DOWNLOAD EBOOK

Recent years have seen silicon integrated circuits enter into an increasing number of technical and consumer applications, until they now affect everyday life, as well as technical areas. Polycrystalline silicon has been an important component of silicon technology for nearly two decades, being used first in MOS integrated circuits and now becoming pervasive in bipolar circuits, as well. During this time a great deal of informa tion has been published about polysilicon. A wide range of deposition conditions has been used to form films exhibiting markedly different properties. Seemingly contradictory results can often be explained by considering the details of the structure formed. This monograph is an attempt to synthesize much of the available knowledge about polysilicon. It represents an effort to interrelate the deposition, properties, and applications of polysilicon so that it can be used most effectively to enhance device and integrated-circuit perfor mance. As device performance improves, however, some of the proper ties of polysilicon are beginning to restrict the overall performance of integrated circuits, and the basic limitations of the properties of polysili con also need to be better understood to minimize potential degradation of circuit behavior.


Silicon Quantum Integrated Circuits

Silicon Quantum Integrated Circuits

Author: E. Kasper

Publisher: Springer Science & Business Media

Published: 2005-12-11

Total Pages: 367

ISBN-13: 3540263829

DOWNLOAD EBOOK

Quantum size effects are becoming increasingly important in microelectronics, as the dimensions of the structures shrink laterally towards 100 nm and vertically towards 10 nm. Advanced device concepts will exploit these effects for integrated circuits with novel or improved properties. Keeping in mind the trend towards systems on chip, this book deals with silicon-based quantum devices and focuses on room-temperature operation. The basic physical principles, materials, technological aspects, and fundamental device operation are discussed in an interdisciplinary manner. It is shown that silicon-germanium (SiGe) heterostructure devices will play a key role in realizing silicon-based quantum electronics.


The Piezojunction Effect in Silicon Integrated Circuits and Sensors

The Piezojunction Effect in Silicon Integrated Circuits and Sensors

Author: Fabiano Fruett

Publisher: Springer Science & Business Media

Published: 2006-04-18

Total Pages: 174

ISBN-13: 030648210X

DOWNLOAD EBOOK

This book describes techniques that can reduce mechanical-stress-induced inaccuracy and long-term instability in chips. The authors also show that the piezojunction effect can be applied for new types of mechanical-sensor structures. Thermo-mechanical stress is induced when packaged chips cool down to the temperature of application.


Three-Dimensional Integrated Circuit Design

Three-Dimensional Integrated Circuit Design

Author: Vasilis F. Pavlidis

Publisher: Newnes

Published: 2017-07-04

Total Pages: 770

ISBN-13: 0124104843

DOWNLOAD EBOOK

Three-Dimensional Integrated Circuit Design, Second Eition, expands the original with more than twice as much new content, adding the latest developments in circuit models, temperature considerations, power management, memory issues, and heterogeneous integration. 3-D IC experts Pavlidis, Savidis, and Friedman cover the full product development cycle throughout the book, emphasizing not only physical design, but also algorithms and system-level considerations to increase speed while conserving energy. A handy, comprehensive reference or a practical design guide, this book provides effective solutions to specific challenging problems concerning the design of three-dimensional integrated circuits. Expanded with new chapters and updates throughout based on the latest research in 3-D integration: Manufacturing techniques for 3-D ICs with TSVs Electrical modeling and closed-form expressions of through silicon vias Substrate noise coupling in heterogeneous 3-D ICs Design of 3-D ICs with inductive links Synchronization in 3-D ICs Variation effects on 3-D ICs Correlation of WID variations for intra-tier buffers and wires Offers practical guidance on designing 3-D heterogeneous systems Provides power delivery of 3-D ICs Demonstrates the use of 3-D ICs within heterogeneous systems that include a variety of materials, devices, processors, GPU-CPU integration, and more Provides experimental case studies in power delivery, synchronization, and thermal characterization


Silicide Technology for Integrated Circuits

Silicide Technology for Integrated Circuits

Author: Institution of Electrical Engineers

Publisher: IET

Published: 2004-12-21

Total Pages: 302

ISBN-13: 9780863413520

DOWNLOAD EBOOK

This is the first book to provide guidance on the development and application of metal silicide technology as it emerges from the scientific to the prototype and manufacturing stages. Other key topics covered are fundamentals, present and future silicide technology for Si-based devices, and characterisation methods. Suitable for engineers and students in microelectronics.


Silicon Optoelectronic Integrated Circuits

Silicon Optoelectronic Integrated Circuits

Author: Horst Zimmermann

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 366

ISBN-13: 3662099047

DOWNLOAD EBOOK

Explains the circuit design of silicon optoelectronic integrated circuits (OEICs), which are central to advances in wireless and wired telecommunications. The essential features of optical absorption are summarized, as is the device physics of photodetectors and their integration in modern bipolar, CMOS, and BiCMOS technologies. This information provides the basis for understanding the underlying mechanisms of the OEICs described in the main part of the book. In order to cover the topic comprehensively, Silicon Optoelectronic Integrated Circuits presents detailed descriptions of many OEICs for a wide variety of applications from various optical sensors, smart sensors, 3D-cameras, and optical storage systems (DVD) to fiber receivers in deep-sub-μm CMOS. Numerous detailed illustrations help to elucidate the material.


Silicon Integrated Circuits

Silicon Integrated Circuits

Author: Dawon Kahng

Publisher: Academic Press

Published: 2013-10-22

Total Pages: 429

ISBN-13: 1483273113

DOWNLOAD EBOOK

Applied Solid State Science, Supplement 2: Silicon Integrated Circuits, Part A focuses on MOS device physics. This book is divided into three chapters—physics of the MOS transistor; nonvolatile memories; and properties of silicon-on-sapphire substrates devices, and integrated circuits. The topics covered include the short channel effects, MOSFET structures, floating gate devices, technology for nonvolatile semiconductor memories, sapphire substrates, and SOS integrated circuits and systems. The MOS capacitor, MIOS devices, and SOS process and device technology are also deliberated. This publication is a good source for students and individuals interested in MOS-based integrated circuits.