Providing an overview of recent developments in the field of signal transduction, this volume emphasizes direct clinical significance. As such, topics like nuclear receptors, apoptosis, growth factors, cell cycles and cancer are examined.
This volume contains papers presented at the Ninth International Conference on Second Messengers and Phosphoproteins. Written by leading scientists - including two Nobel Laureates - the papers highlight contemporary advances in the rapidly evolving field of signal transduction. The findings presented are of vital significance to researchers in virtually all biomedical fields, including pharmacology, molecular biology, cell biology, biochemistry, the neurosciences, and physiology. The contributors offer new insights into fundamental cell signalling mechanisms and explore the role of these mechanisms in physiological and pathophysiological responses in a variety of systems. Coverage includes many topics that are currently under intensive study, such as growth factors and special signalling systems; protein phosphatases and metabolic pathways; calcium and ion channels; cyclic GMP and cyclic AMP; and receptors and G proteins.
The mechanism of information transfer between cells is the subject of this text. In the past, aspects of this field were the domain of different disciplines, including endocrinology, neurochemistry, and pharmacology. However, in recent years, signal transduction has emerged as an independent discipline.
Cellular Signal Processing offers a unifying view of cell signaling based on the concept that protein interactions act as sophisticated data processing networks that govern intracellular and extracellular communication. It is intended for use in signal transduction courses for undergraduate and graduate students working in biology, biochemistry, bioinformatics, and pharmacology, as well as medical students. The text is organized by three key topics central to signal transduction: the protein network, its energy supply, and its evolution. It covers all important aspects of cell signaling, ranging from prokaryotic signal transduction to neuronal signaling, and also highlights the clinical aspects of cell signaling in health and disease. This new edition includes expanded coverage of prokaryotes, as well as content on new developments in systems biology, epigenetics, redox signaling, and small, non-coding RNA signaling.
Eosinophils in Health and Disease provides immunology researchers and students with a comprehensive overview of current thought and cutting-edge eosinophil research, providing chapters on basic science, disease-specific issues, therapeutics, models for study and areas of emerging importance.
This timely volume provides a comprehensive overview of glucocorticoids and their role in regulating many aspects of physiology and their use in the treatment of disease. The book is broken into four sections that begin by giving a general introduction to glucocorticoids and a brief history of the field. The second section will discuss the effects of glucocorticoids on metabolism, while the third section will cover the effects of glucocorticoids on key tissues. The final section will discuss general topics, such as animal models in glucocorticoid research and clinical implications of glucocorticoid research. Featuring chapters from leaders in the field, this volume will be of interest to both researchers and clinicians.
This book, now in an extensively revised second edition, describes the crucial role of zinc signaling in biological processes on a molecular and physiological basis. Global leaders in the field review the latest knowledge, including the very significant advances in understanding that have been achieved since publication of the first edition. Detailed information is provided on all the essentials of zinc signaling, covering molecular aspects and the roles of zinc transporters, the zinc sensing receptor, and metallothioneins. Detection techniques for zinc signals, involving genetically encoded and chemical probes, are also described. The critical contributions of the zinc signal in maintaining health and the adverse consequences of any imbalance in the signal are then thoroughly addressed. Here, readers will find up-to-date information on the significance of the zinc signal in a wide range of conditions, including cardiovascular disorders, neurodegenerative diseases, diabetes, autoimmune diseases, inflammatory conditions, skin disease, osteoarthritis, and cancer. The book will be of value for researchers, clinicians, and advanced students.
In recent years, the role of cilia in the study of health, development and disease has been increasingly clear, and new discoveries have made this an exciting and important field of research. This comprehensive volume, a complement to the new three-volume treatment of cilia and flagella by King and Pazour, presents easy-to-follow protocols and detailed background information for researchers working with cilia and flagella. - Covers protocols for primary cilia across several systems and species - Both classic and state-of-the-art methods readily adaptable across model systems, and designed to last the test of time - Relevant to clinicians and scientists working in a wide range of fields
One of the most exciting areas of cancer research now is the development of agents which can target signal transduction pathways that are activated inappropriately in malignant cells. The understanding of the molecular abnormalities which distinguish malignant cells from their normal counterparts has grown tremendously. This volume summarizes the current research on the role that signal transduction pathways play in the pathogenesis of cancer and how this knowledge may be used to develop the next generation of more effective and less toxic anticancer agents. Series Editor comments: "The biologic behavior of both normal and cancer cells is determined by critical signal transduction pathways. This text provides a comprehensive review of the field. Leading investigators discuss key molecules that may prove to be important diagnostic and/or therapeutic targets."