Advanced semiconductor technology is depending on innovation and less on "classical" scaling. SiGe, Ge, and Related Compounds has become a key component in the arsenal in improving semiconductor performance. This symposium discusses the technology to form these materials, process them, FET devices incorporating them, Surfaces and Interfaces, Optoelectronic devices, and HBT devices.
Advanced semiconductor technology is depending on innovation and less on "classical" scaling. SiGe, Ge, and Related Compounds have become a key component of the arsenal in improving semiconductor performance. This issue of ECS Transactions discusses the technology to form these materials, process them, FET devices incorporating them, Surfaces and Interfaces, Optoelectronic devices, and HBT devices.
Semiconductor nanowires promise to provide the building blocks for a new generation of nanoscale electronic and optoelectronic devices. Semiconductor Nanowires: Materials, Synthesis, Characterization and Applications covers advanced materials for nanowires, the growth and synthesis of semiconductor nanowires—including methods such as solution growth, MOVPE, MBE, and self-organization. Characterizing the properties of semiconductor nanowires is covered in chapters describing studies using TEM, SPM, and Raman scattering. Applications of semiconductor nanowires are discussed in chapters focusing on solar cells, battery electrodes, sensors, optoelectronics and biology. - Explores a selection of advanced materials for semiconductor nanowires - Outlines key techniques for the property assessment and characterization of semiconductor nanowires - Covers a broad range of applications across a number of fields
In recent years, many efforts have been devoted in the study, development and application of Green Photonics and Smart Photonics. This book presents recent advances, both theoretical and applications, reflecting the cutting-edge technologies and research achievements within these research fields. Green Photonics intend to develop photonics technologies that can conserve energy, reduce pollution and create renewable energy. Light emitting diodes (LEDs) and solar cells with the characteristics of sustainable and low energy consumption are addressed in this book. The term of Smart Photonics reflect intelligence of optical and optoelectronic components with high sensitivity, fast response time and/or compact size. The book explores various aspects of smart photonics including fiber sensors, optoelectronic devices and waveguide devices. The chapters in this edited book are written by researchers who presented quality papers at the 2015 International Symposium of Next-Generation Electronics (ISNE 2015), which was held in Taipei, Taiwan. The ISNE 2015 provided a common forum in the areas of opto-electron devices, photonics, integrated circuits, and microelectronic systems and technologies. The technical program consisted of 5 plenary talks, 23 invited talks and more than 250 contributed oral and poster presentations. After a rigorous review process, the ISNE 2015 technical program committee has selected 10 outstanding presentations and invited the authors to prepare extended chapters for inclusion in this book. Of the 10 chapters, five focus on the subject of green photonics, and the others cover smart photonics.
Gallium Arsenide and Related Compounds 1993 covers III-V compounds from crystal growth of materials to their device applications. Focusing on the fields of optical communications and satellite broadcasting, the book describes the practical applications for GaAs and III-V compounds in devices and circuits, both conventional and those based on quantum effects. It also discusses ultrafast GaAs transistors and integrated circuits, novel laser diodes, and tunneling devices, and considers the direction for future technologies. In addition, this volume addresses the increasing demands of ultra high speed systems that require careful selection of III-V materials to optimize the performance of electronic and optoelectronic components. It is ideal reading for physicists, materials scientists, electrical, and electronics engineers investigating III-V compound materials, properties, and devices.
Providing a comprehensive overview of developments to both the academic and industrial communities, Compound Semiconductors 1996 covers all types of compound semiconducting materials and devices. The book includes results on blue and green lasers, heterostructure devices, nanoelectronics, and novel wide band gap semiconductors. With invited review papers and research results in current topics of interest, this volume is part of a well-known series of conferences for the dissemination of research results in the field.
An international perspective on recent research, Compound Semiconductors 2001 provides an overview of important developments in III-V compound semiconductors, such as GaAs, InP, and GaN; II-VI compounds, such as ZnSe and CdTe; and IV-IV compounds, such as SiC and SiGe. The book contains 139 papers arranged in chapters on electronic devices, optical devices, magnetic materials, novel systems, quantum transport, optical characterization, quantum nanostructures, and material growth and characterization. The content encompasses the development of optical and electronic devices based on nitride semiconductors as well as the steady advances in traditional topics like III-V-based electronic and optical devices, growth and processing, and characterization. The book also includes novel research trends in quantum structures, such as quantum wires and dots, and spintronics, which are very promising for future developments in nanotechnology. As the primary forum for research into these materials and their device applications, this resource is an essential reference for researchers working on compound semiconductors in semiconductor physics, device physics, materials science, chemistry, and electronic and electrical engineering.